You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

446 lines
17 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results
Usage: See https://docs.ultralytics.com/modes/predict/
"""
from copy import deepcopy
from functools import lru_cache
from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.data.augment import LetterBox
from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class BaseTensor(SimpleClass):
"""
Attributes:
data (torch.Tensor): Base tensor.
orig_shape (tuple): Original image size, in the format (height, width).
Methods:
cpu(): Returns a copy of the tensor on CPU memory.
numpy(): Returns a copy of the tensor as a numpy array.
cuda(): Returns a copy of the tensor on GPU memory.
to(): Returns a copy of the tensor with the specified device and dtype.
"""
def __init__(self, data, orig_shape) -> None:
self.data = data
self.orig_shape = orig_shape
@property
def shape(self):
return self.data.shape
def cpu(self):
return self.__class__(self.data.cpu(), self.orig_shape)
def numpy(self):
return self.__class__(self.data.numpy(), self.orig_shape)
def cuda(self):
return self.__class__(self.data.cuda(), self.orig_shape)
def to(self, *args, **kwargs):
return self.__class__(self.data.to(*args, **kwargs), self.orig_shape)
def __len__(self): # override len(results)
return len(self.data)
def __getitem__(self, idx):
return self.__class__(self.data[idx], self.orig_shape)
class Results(SimpleClass):
"""
A class for storing and manipulating inference results.
Args:
orig_img (numpy.ndarray): The original image as a numpy array.
path (str): The path to the image file.
names (dict): A dictionary of class names.
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection.
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
Attributes:
orig_img (numpy.ndarray): The original image as a numpy array.
orig_shape (tuple): The original image shape in (height, width) format.
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
masks (Masks, optional): A Masks object containing the detection masks.
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
names (dict): A dictionary of class names.
path (str): The path to the image file.
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
_keys (tuple): A tuple of attribute names for non-empty attributes.
"""
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = probs if probs is not None else None
self.keypoints = keypoints if keypoints is not None else None
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
self.names = names
self.path = path
self._keys = ('boxes', 'masks', 'probs', 'keypoints')
def pandas(self):
pass
# TODO masks.pandas + boxes.pandas + cls.pandas
def __getitem__(self, idx):
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k)[idx])
return r
def update(self, boxes=None, masks=None, probs=None):
if boxes is not None:
self.boxes = Boxes(boxes, self.orig_shape)
if masks is not None:
self.masks = Masks(masks, self.orig_shape)
if probs is not None:
self.probs = probs
def cpu(self):
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cpu())
return r
def numpy(self):
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).numpy())
return r
def cuda(self):
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).cuda())
return r
def to(self, *args, **kwargs):
r = self.new()
for k in self.keys:
setattr(r, k, getattr(self, k).to(*args, **kwargs))
return r
def __len__(self):
for k in self.keys:
return len(getattr(self, k))
def new(self):
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
@property
def keys(self):
return [k for k in self._keys if getattr(self, k) is not None]
def plot(
self,
conf=True,
line_width=None,
font_size=None,
font='Arial.ttf',
pil=False,
img=None,
img_gpu=None,
kpt_line=True,
labels=True,
boxes=True,
masks=True,
probs=True,
**kwargs # deprecated args TODO: remove support in 8.2
):
"""
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
Args:
conf (bool): Whether to plot the detection confidence score.
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
font (str): The font to use for the text.
pil (bool): Whether to return the image as a PIL Image.
img (numpy.ndarray): Plot to another image. if not, plot to original image.
img_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
kpt_line (bool): Whether to draw lines connecting keypoints.
labels (bool): Whether to plot the label of bounding boxes.
boxes (bool): Whether to plot the bounding boxes.
masks (bool): Whether to plot the masks.
probs (bool): Whether to plot classification probability
Returns:
(numpy.ndarray): A numpy array of the annotated image.
"""
# Deprecation warn TODO: remove in 8.2
if 'show_conf' in kwargs:
deprecation_warn('show_conf', 'conf')
conf = kwargs['show_conf']
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False'
names = self.names
annotator = Annotator(deepcopy(self.orig_img if img is None else img),
line_width,
font_size,
font,
pil,
example=names)
pred_boxes, show_boxes = self.boxes, boxes
pred_masks, show_masks = self.masks, masks
pred_probs, show_probs = self.probs, probs
keypoints = self.keypoints
if pred_masks and show_masks:
if img_gpu is None:
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
2, 0, 1).flip(0).contiguous() / 255
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu)
if pred_boxes and show_boxes:
for d in reversed(pred_boxes):
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
name = ('' if id is None else f'id:{id} ') + names[c]
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
if pred_probs is not None and show_probs:
n5 = min(len(names), 5)
top5i = pred_probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices
text = f"{', '.join(f'{names[j] if names else j} {pred_probs[j]:.2f}' for j in top5i)}, "
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
if keypoints is not None:
for k in reversed(keypoints):
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line)
return annotator.result()
def verbose(self):
"""
Return log string for each task.
"""
log_string = ''
probs = self.probs
boxes = self.boxes
if len(self) == 0:
return log_string if probs is not None else f'{log_string}(no detections), '
if probs is not None:
n5 = min(len(self.names), 5)
top5i = probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices
log_string += f"{', '.join(f'{self.names[j]} {probs[j]:.2f}' for j in top5i)}, "
if boxes:
for c in boxes.cls.unique():
n = (boxes.cls == c).sum() # detections per class
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
return log_string
def save_txt(self, txt_file, save_conf=False):
"""Save predictions into txt file.
Args:
txt_file (str): txt file path.
save_conf (bool): save confidence score or not.
"""
boxes = self.boxes
masks = self.masks
probs = self.probs
kpts = self.keypoints
texts = []
if probs is not None:
# classify
n5 = min(len(self.names), 5)
top5i = probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices
[texts.append(f'{probs[j]:.2f} {self.names[j]}') for j in top5i]
elif boxes:
# detect/segment/pose
for j, d in enumerate(boxes):
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
line = (c, *d.xywhn.view(-1))
if masks:
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
line = (c, *seg)
if kpts is not None:
kpt = (kpts[j][:, :2] / d.orig_shape[[1, 0]]).reshape(-1).tolist()
line += (*kpt, )
line += (conf, ) * save_conf + (() if id is None else (id, ))
texts.append(('%g ' * len(line)).rstrip() % line)
with open(txt_file, 'a') as f:
for text in texts:
f.write(text + '\n')
def save_crop(self, save_dir, file_name=Path('im.jpg')):
"""Save cropped predictions to `save_dir/cls/file_name.jpg`.
Args:
save_dir (str | pathlib.Path): Save path.
file_name (str | pathlib.Path): File name.
"""
if self.probs is not None:
LOGGER.warning('Warning: Classify task do not support `save_crop`.')
return
if isinstance(save_dir, str):
save_dir = Path(save_dir)
if isinstance(file_name, str):
file_name = Path(file_name)
for d in self.boxes:
save_one_box(d.xyxy,
self.orig_img.copy(),
file=save_dir / self.names[int(d.cls)] / f'{file_name.stem}.jpg',
BGR=True)
class Boxes(BaseTensor):
"""
A class for storing and manipulating detection boxes.
Args:
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
boxes (torch.Tensor) or (numpy.ndarray): The detection boxes with shape (num_boxes, 6).
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
is_track (bool): True if the boxes also include track IDs, False otherwise.
Properties:
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available).
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
data (torch.Tensor): The raw bboxes tensor
Methods:
cpu(): Move the object to CPU memory.
numpy(): Convert the object to a numpy array.
cuda(): Move the object to CUDA memory.
to(*args, **kwargs): Move the object to the specified device.
pandas(): Convert the object to a pandas DataFrame (not yet implemented).
"""
def __init__(self, boxes, orig_shape) -> None:
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 7
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
else np.asarray(orig_shape)
@property
def xyxy(self):
return self.data[:, :4]
@property
def conf(self):
return self.data[:, -2]
@property
def cls(self):
return self.data[:, -1]
@property
def id(self):
return self.data[:, -3] if self.is_track else None
@property
@lru_cache(maxsize=2) # maxsize 1 should suffice
def xywh(self):
return ops.xyxy2xywh(self.xyxy)
@property
@lru_cache(maxsize=2)
def xyxyn(self):
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
@property
@lru_cache(maxsize=2)
def xywhn(self):
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
def pandas(self):
LOGGER.info('results.pandas() method not yet implemented')
@property
def boxes(self):
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
return self.data
class Masks(BaseTensor):
"""
A class for storing and manipulating detection masks.
Args:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Attributes:
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
orig_shape (tuple): Original image size, in the format (height, width).
Properties:
xy (list): A list of segments (pixels) which includes x, y segments of each detection.
xyn (list): A list of segments (normalized) which includes x, y segments of each detection.
Methods:
cpu(): Returns a copy of the masks tensor on CPU memory.
numpy(): Returns a copy of the masks tensor as a numpy array.
cuda(): Returns a copy of the masks tensor on GPU memory.
to(): Returns a copy of the masks tensor with the specified device and dtype.
"""
def __init__(self, masks, orig_shape) -> None:
if masks.ndim == 2:
masks = masks[None, :]
super().__init__(masks, orig_shape)
@property
@lru_cache(maxsize=1)
def segments(self):
# Segments-deprecated (normalized)
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and "
"'Masks.xy' for segments (pixels) instead.")
return self.xyn
@property
@lru_cache(maxsize=1)
def xyn(self):
# Segments (normalized)
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
for x in ops.masks2segments(self.data)]
@property
@lru_cache(maxsize=1)
def xy(self):
# Segments (pixels)
return [
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
for x in ops.masks2segments(self.data)]
@property
def masks(self):
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
return self.data