You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
8.2 KiB

from pathlib import Path
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, yaml_load
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
"classify": [
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
'yolo.TYPE.classify.ClassificationPredictor'],
"detect": [
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
'yolo.TYPE.detect.DetectionPredictor'],
"segment": [
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
'yolo.TYPE.segment.SegmentationPredictor']}
class YOLO:
"""
YOLO
A python interface which emulates a model-like behaviour by wrapping trainers.
"""
def __init__(self, model='yolov8n.yaml', type="v8") -> None:
"""
Initializes the YOLO object.
Args:
model (str, Path): model to load or create
type (str): Type/version of models to use. Defaults to "v8".
"""
self.type = type
self.ModelClass = None # model class
self.TrainerClass = None # trainer class
self.ValidatorClass = None # validator class
self.PredictorClass = None # predictor class
self.model = None # model object
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.ckpt_path = None
self.cfg = None # if loaded from *.yaml
self.overrides = {} # overrides for trainer object
self.init_disabled = False # disable model initialization
# Load or create new YOLO model
{'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model)
def __call__(self, source):
return self.predict(source)
def _new(self, cfg: str, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
verbose (bool): display model info on load
"""
cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
self.task = guess_task_from_head(cfg_dict["head"][-1][-2])
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
self.cfg = cfg
def _load(self, weights: str):
"""
Initializes a new model and infers the task type from the model head
Args:
weights (str): model checkpoint to be loaded
"""
self.model = attempt_load_weights(weights)
self.ckpt_path = weights
self.task = self.model.args["task"]
self.overrides = self.model.args
self._reset_ckpt_args(self.overrides)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
def reset(self):
"""
Resets the model modules .
"""
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
def info(self, verbose=False):
"""
Logs model info
Args:
verbose (bool): Controls verbosity.
"""
if not self.model:
LOGGER.info("model not initialized!")
self.model.info(verbose=verbose)
def fuse(self):
if not self.model:
LOGGER.info("model not initialized!")
self.model.fuse()
@smart_inference_mode()
def predict(self, source, **kwargs):
"""
Visualize prediction.
Args:
source (str): Accepts all source types accepted by yolo
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides["mode"] = "predict"
predictor = self.PredictorClass(overrides=overrides)
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
predictor.setup(model=self.model, source=source)
predictor()
@smart_inference_mode()
def val(self, data=None, **kwargs):
"""
Validate a model on a given dataset
Args:
data (str): The dataset to validate on. Accepts all formats accepted by yolo
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
if not self.model:
raise ModuleNotFoundError("model not initialized!")
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides["mode"] = "val"
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
args.data = data or args.data
args.task = self.task
validator = self.ValidatorClass(args=args)
validator(model=self.model)
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
args.task = self.task
exporter = Exporter(overrides=args)
exporter(model=self.model)
def train(self, **kwargs):
"""
Trains the model on given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed
"""
if not self.model:
raise AttributeError("model not initialized. Use .new() or .load()")
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=True)
overrides["task"] = self.task
overrides["mode"] = "train"
if not overrides.get("data"):
raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.")
if overrides.get("resume"):
overrides["resume"] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
if not overrides.get("resume"):
self.trainer.model = self.trainer.load_model(weights=self.model,
model_cfg=self.model.yaml if self.task != "classify" else None)
self.model = self.trainer.model # override here to save memory
self.trainer.train()
def to(self, device):
self.model.to(device)
def _guess_ops_from_task(self, task):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
return model_class, trainer_class, validator_class, predictor_class
@staticmethod
def _reset_ckpt_args(args):
args.pop("device", None)
args.pop("project", None)
args.pop("name", None)
args.pop("batch", None)
args.pop("epochs", None)