|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
"""
|
|
|
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
|
|
|
|
|
Format | `format=argument` | Model
|
|
|
--- | --- | ---
|
|
|
PyTorch | - | yolov8n.pt
|
|
|
TorchScript | `torchscript` | yolov8n.torchscript
|
|
|
ONNX | `onnx` | yolov8n.onnx
|
|
|
OpenVINO | `openvino` | yolov8n_openvino_model/
|
|
|
TensorRT | `engine` | yolov8n.engine
|
|
|
CoreML | `coreml` | yolov8n.mlmodel
|
|
|
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
|
|
|
TensorFlow GraphDef | `pb` | yolov8n.pb
|
|
|
TensorFlow Lite | `tflite` | yolov8n.tflite
|
|
|
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
|
|
|
TensorFlow.js | `tfjs` | yolov8n_web_model/
|
|
|
PaddlePaddle | `paddle` | yolov8n_paddle_model/
|
|
|
|
|
|
Requirements:
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
|
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
|
|
|
|
|
Python:
|
|
|
from ultralytics import YOLO
|
|
|
model = YOLO('yolov8n.yaml')
|
|
|
results = model.export(format='onnx')
|
|
|
|
|
|
CLI:
|
|
|
$ yolo mode=export model=yolov8n.pt format=onnx
|
|
|
|
|
|
Inference:
|
|
|
$ python detect.py --weights yolov8n.pt # PyTorch
|
|
|
yolov8n.torchscript # TorchScript
|
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
|
|
yolov8n_openvino_model # OpenVINO
|
|
|
yolov8n.engine # TensorRT
|
|
|
yolov8n.mlmodel # CoreML (macOS-only)
|
|
|
yolov8n_saved_model # TensorFlow SavedModel
|
|
|
yolov8n.pb # TensorFlow GraphDef
|
|
|
yolov8n.tflite # TensorFlow Lite
|
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|
|
yolov8n_paddle_model # PaddlePaddle
|
|
|
|
|
|
TensorFlow.js:
|
|
|
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
|
|
$ npm install
|
|
|
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model
|
|
|
$ npm start
|
|
|
"""
|
|
|
import contextlib
|
|
|
import json
|
|
|
import os
|
|
|
import platform
|
|
|
import re
|
|
|
import subprocess
|
|
|
import time
|
|
|
import warnings
|
|
|
from collections import defaultdict
|
|
|
from copy import deepcopy
|
|
|
from pathlib import Path
|
|
|
|
|
|
import hydra
|
|
|
import numpy as np
|
|
|
import pandas as pd
|
|
|
import torch
|
|
|
|
|
|
import ultralytics
|
|
|
from ultralytics.nn.modules import Detect, Segment
|
|
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
|
|
from ultralytics.yolo.configs import get_config
|
|
|
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
|
|
from ultralytics.yolo.data.utils import check_dataset
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
|
|
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
|
|
from ultralytics.yolo.utils.files import file_size
|
|
|
from ultralytics.yolo.utils.ops import Profile
|
|
|
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
|
|
|
|
|
|
MACOS = platform.system() == 'Darwin' # macOS environment
|
|
|
|
|
|
|
|
|
def export_formats():
|
|
|
# YOLOv5 export formats
|
|
|
x = [
|
|
|
['PyTorch', '-', '.pt', True, True],
|
|
|
['TorchScript', 'torchscript', '.torchscript', True, True],
|
|
|
['ONNX', 'onnx', '.onnx', True, True],
|
|
|
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
|
|
['TensorRT', 'engine', '.engine', False, True],
|
|
|
['CoreML', 'coreml', '.mlmodel', True, False],
|
|
|
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
|
|
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
|
|
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
|
|
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
|
|
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
|
|
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
|
|
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
|
|
|
|
|
|
|
|
def try_export(inner_func):
|
|
|
# YOLOv5 export decorator, i..e @try_export
|
|
|
inner_args = get_default_args(inner_func)
|
|
|
|
|
|
def outer_func(*args, **kwargs):
|
|
|
prefix = inner_args['prefix']
|
|
|
try:
|
|
|
with Profile() as dt:
|
|
|
f, model = inner_func(*args, **kwargs)
|
|
|
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
|
|
return f, model
|
|
|
except Exception as e:
|
|
|
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
|
|
return None, None
|
|
|
|
|
|
return outer_func
|
|
|
|
|
|
|
|
|
class Exporter:
|
|
|
"""
|
|
|
Exporter
|
|
|
|
|
|
A class for exporting a model.
|
|
|
|
|
|
Attributes:
|
|
|
args (OmegaConf): Configuration for the exporter.
|
|
|
save_dir (Path): Directory to save results.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
|
|
|
"""
|
|
|
Initializes the Exporter class.
|
|
|
|
|
|
Args:
|
|
|
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
|
|
|
overrides (dict, optional): Configuration overrides. Defaults to None.
|
|
|
"""
|
|
|
if overrides is None:
|
|
|
overrides = {}
|
|
|
self.args = get_config(config, overrides)
|
|
|
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
|
|
callbacks.add_integration_callbacks(self)
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
def __call__(self, model=None):
|
|
|
self.run_callbacks("on_export_start")
|
|
|
t = time.time()
|
|
|
format = self.args.format.lower() # to lowercase
|
|
|
fmts = tuple(export_formats()['Argument'][1:]) # available export formats
|
|
|
flags = [x == format for x in fmts]
|
|
|
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}'
|
|
|
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
|
|
|
|
|
# Load PyTorch model
|
|
|
self.device = select_device(self.args.device or 'cpu')
|
|
|
if self.args.half:
|
|
|
if self.device.type == 'cpu' and not coreml:
|
|
|
LOGGER.info('half=True only compatible with GPU or CoreML export, i.e. use device=0 or format=coreml')
|
|
|
self.args.half = False
|
|
|
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic'
|
|
|
|
|
|
# Checks
|
|
|
# if self.args.batch == model.args['batch_size']: # user has not modified training batch_size
|
|
|
self.args.batch = 1
|
|
|
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
|
|
|
if self.args.optimize:
|
|
|
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
|
|
|
|
|
# Input
|
|
|
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
|
|
|
file = Path(getattr(model, 'pt_path', None) or model.yaml['yaml_file'])
|
|
|
if file.suffix == '.yaml':
|
|
|
file = Path(file.name)
|
|
|
|
|
|
# Update model
|
|
|
model = deepcopy(model)
|
|
|
for p in model.parameters():
|
|
|
p.requires_grad = False
|
|
|
model.eval()
|
|
|
model = model.fuse()
|
|
|
for k, m in model.named_modules():
|
|
|
if isinstance(m, (Detect, Segment)):
|
|
|
m.dynamic = self.args.dynamic
|
|
|
m.export = True
|
|
|
|
|
|
y = None
|
|
|
for _ in range(2):
|
|
|
y = model(im) # dry runs
|
|
|
if self.args.half and not coreml:
|
|
|
im, model = im.half(), model.half() # to FP16
|
|
|
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
|
|
LOGGER.info(
|
|
|
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
|
|
|
|
|
# Warnings
|
|
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
|
|
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning
|
|
|
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
|
|
|
|
|
|
# Assign
|
|
|
self.im = im
|
|
|
self.model = model
|
|
|
self.file = file
|
|
|
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y)
|
|
|
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
|
|
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
|
|
|
|
|
# Exports
|
|
|
f = [''] * len(fmts) # exported filenames
|
|
|
if jit: # TorchScript
|
|
|
f[0], _ = self._export_torchscript()
|
|
|
if engine: # TensorRT required before ONNX
|
|
|
f[1], _ = self._export_engine()
|
|
|
if onnx or xml: # OpenVINO requires ONNX
|
|
|
f[2], _ = self._export_onnx()
|
|
|
if xml: # OpenVINO
|
|
|
f[3], _ = self._export_openvino()
|
|
|
if coreml: # CoreML
|
|
|
f[4], _ = self._export_coreml()
|
|
|
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
|
|
assert not isinstance(model, ClassificationModel), 'ClassificationModel TF exports not yet supported.'
|
|
|
nms = False
|
|
|
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
|
|
agnostic_nms=self.args.agnostic_nms or tfjs)
|
|
|
if pb or tfjs: # pb prerequisite to tfjs
|
|
|
f[6], _ = self._export_pb(s_model)
|
|
|
if tflite or edgetpu:
|
|
|
f[7], _ = self._export_tflite(s_model,
|
|
|
int8=self.args.int8 or edgetpu,
|
|
|
data=self.args.data,
|
|
|
nms=nms,
|
|
|
agnostic_nms=self.args.agnostic_nms)
|
|
|
if edgetpu:
|
|
|
f[8], _ = self._export_edgetpu()
|
|
|
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(s_model.outputs))
|
|
|
if tfjs:
|
|
|
f[9], _ = self._export_tfjs()
|
|
|
if paddle: # PaddlePaddle
|
|
|
f[10], _ = self._export_paddle()
|
|
|
|
|
|
# Finish
|
|
|
f = [str(x) for x in f if x] # filter out '' and None
|
|
|
if any(f):
|
|
|
task = guess_task_from_head(model.yaml["head"][-1][-2])
|
|
|
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
|
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
|
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
|
|
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}"
|
|
|
f"\nValidate: yolo task={task} mode=val model={f[-1]} {s}"
|
|
|
f"\nVisualize: https://netron.app")
|
|
|
|
|
|
self.run_callbacks("on_export_end")
|
|
|
return f # return list of exported files/dirs
|
|
|
|
|
|
@try_export
|
|
|
def _export_torchscript(self, prefix=colorstr('TorchScript:')):
|
|
|
# YOLOv5 TorchScript model export
|
|
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
|
|
f = self.file.with_suffix('.torchscript')
|
|
|
|
|
|
ts = torch.jit.trace(self.model, self.im, strict=False)
|
|
|
d = {"shape": self.im.shape, "stride": int(max(self.model.stride)), "names": self.model.names}
|
|
|
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
|
|
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
|
|
LOGGER.info(f'{prefix} optimizing for mobile...')
|
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
|
|
else:
|
|
|
ts.save(str(f), _extra_files=extra_files)
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_onnx(self, prefix=colorstr('ONNX:')):
|
|
|
# YOLOv5 ONNX export
|
|
|
check_requirements('onnx>=1.12.0')
|
|
|
import onnx # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
|
|
f = str(self.file.with_suffix('.onnx'))
|
|
|
|
|
|
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
|
|
|
dynamic = self.args.dynamic
|
|
|
if dynamic:
|
|
|
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
|
|
if isinstance(self.model, SegmentationModel):
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
|
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
|
|
elif isinstance(self.model, DetectionModel):
|
|
|
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
|
|
|
|
|
torch.onnx.export(
|
|
|
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu
|
|
|
self.im.cpu() if dynamic else self.im,
|
|
|
f,
|
|
|
verbose=False,
|
|
|
opset_version=self.args.opset,
|
|
|
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
|
input_names=['images'],
|
|
|
output_names=output_names,
|
|
|
dynamic_axes=dynamic or None)
|
|
|
|
|
|
# Checks
|
|
|
model_onnx = onnx.load(f) # load onnx model
|
|
|
onnx.checker.check_model(model_onnx) # check onnx model
|
|
|
|
|
|
# Metadata
|
|
|
d = {'stride': int(max(self.model.stride)), 'names': self.model.names}
|
|
|
for k, v in d.items():
|
|
|
meta = model_onnx.metadata_props.add()
|
|
|
meta.key, meta.value = k, str(v)
|
|
|
onnx.save(model_onnx, f)
|
|
|
|
|
|
# Simplify
|
|
|
if self.args.simplify:
|
|
|
try:
|
|
|
check_requirements('onnxsim')
|
|
|
import onnxsim
|
|
|
|
|
|
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
|
subprocess.run(f'onnxsim {f} {f}', shell=True)
|
|
|
except Exception as e:
|
|
|
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
|
|
return f, model_onnx
|
|
|
|
|
|
@try_export
|
|
|
def _export_openvino(self, prefix=colorstr('OpenVINO:')):
|
|
|
# YOLOv5 OpenVINO export
|
|
|
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
|
|
import openvino.inference_engine as ie # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
|
|
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}')
|
|
|
f_onnx = self.file.with_suffix('.onnx')
|
|
|
|
|
|
cmd = f"mo --input_model {f_onnx} --output_dir {f} --data_type {'FP16' if self.args.half else 'FP32'}"
|
|
|
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')):
|
|
|
# YOLOv5 Paddle export
|
|
|
check_requirements(('paddlepaddle', 'x2paddle'))
|
|
|
import x2paddle # noqa
|
|
|
from x2paddle.convert import pytorch2paddle # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
|
|
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
|
|
|
|
|
|
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
|
|
|
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
|
|
# YOLOv5 CoreML export
|
|
|
check_requirements('coremltools>=6.0')
|
|
|
import coremltools as ct # noqa
|
|
|
|
|
|
class iOSModel(torch.nn.Module):
|
|
|
# Wrap an Ultralytics YOLO model for iOS export
|
|
|
def __init__(self, model, im):
|
|
|
super().__init__()
|
|
|
b, c, h, w = im.shape # batch, channel, height, width
|
|
|
self.model = model
|
|
|
self.nc = len(model.names) # number of classes
|
|
|
if w == h:
|
|
|
self.normalize = 1.0 / w # scalar
|
|
|
else:
|
|
|
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
|
|
|
|
|
|
def forward(self, x):
|
|
|
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
|
|
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
|
|
f = self.file.with_suffix('.mlmodel')
|
|
|
|
|
|
model = iOSModel(self.model, self.im) if self.args.nms else self.model
|
|
|
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
|
|
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
|
|
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
|
|
if bits < 32:
|
|
|
if MACOS: # quantization only supported on macOS
|
|
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
|
|
else:
|
|
|
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...')
|
|
|
if self.args.nms:
|
|
|
ct_model = self._pipeline_coreml(ct_model)
|
|
|
|
|
|
ct_model.save(str(f))
|
|
|
return f, ct_model
|
|
|
|
|
|
@try_export
|
|
|
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
|
|
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
|
|
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`'
|
|
|
try:
|
|
|
import tensorrt as trt # noqa
|
|
|
except ImportError:
|
|
|
if platform.system() == 'Linux':
|
|
|
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
|
|
import tensorrt as trt # noqa
|
|
|
|
|
|
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=8.0.0
|
|
|
self._export_onnx()
|
|
|
onnx = self.file.with_suffix('.onnx')
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
|
|
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
|
|
f = self.file.with_suffix('.engine') # TensorRT engine file
|
|
|
logger = trt.Logger(trt.Logger.INFO)
|
|
|
if verbose:
|
|
|
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
|
|
|
|
builder = trt.Builder(logger)
|
|
|
config = builder.create_builder_config()
|
|
|
config.max_workspace_size = workspace * 1 << 30
|
|
|
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
|
|
|
|
|
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
|
|
network = builder.create_network(flag)
|
|
|
parser = trt.OnnxParser(network, logger)
|
|
|
if not parser.parse_from_file(str(onnx)):
|
|
|
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
|
|
|
|
|
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
|
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
|
for inp in inputs:
|
|
|
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
|
for out in outputs:
|
|
|
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
|
|
|
|
if self.args.dynamic:
|
|
|
shape = self.im.shape
|
|
|
if shape[0] <= 1:
|
|
|
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
|
|
profile = builder.create_optimization_profile()
|
|
|
for inp in inputs:
|
|
|
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape)
|
|
|
config.add_optimization_profile(profile)
|
|
|
|
|
|
LOGGER.info(
|
|
|
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
|
|
|
if builder.platform_has_fast_fp16 and self.args.half:
|
|
|
config.set_flag(trt.BuilderFlag.FP16)
|
|
|
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
|
|
t.write(engine.serialize())
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_saved_model(self,
|
|
|
nms=False,
|
|
|
agnostic_nms=False,
|
|
|
topk_per_class=100,
|
|
|
topk_all=100,
|
|
|
iou_thres=0.45,
|
|
|
conf_thres=0.25,
|
|
|
prefix=colorstr('TensorFlow SavedModel:')):
|
|
|
|
|
|
# YOLOv5 TensorFlow SavedModel export
|
|
|
try:
|
|
|
import tensorflow as tf # noqa
|
|
|
except ImportError:
|
|
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
|
|
import tensorflow as tf # noqa
|
|
|
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon"),
|
|
|
cmds="--extra-index-url https://pypi.ngc.nvidia.com ")
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
f = str(self.file).replace(self.file.suffix, '_saved_model')
|
|
|
|
|
|
# Export to ONNX
|
|
|
self._export_onnx()
|
|
|
onnx = self.file.with_suffix('.onnx')
|
|
|
|
|
|
# Export to TF SavedModel
|
|
|
subprocess.run(f'onnx2tf -i {onnx} --output_signaturedefs -o {f}', shell=True)
|
|
|
|
|
|
# Load saved_model
|
|
|
keras_model = tf.saved_model.load(f, tags=None, options=None)
|
|
|
|
|
|
return f, keras_model
|
|
|
|
|
|
@try_export
|
|
|
def _export_saved_model_OLD(self,
|
|
|
nms=False,
|
|
|
agnostic_nms=False,
|
|
|
topk_per_class=100,
|
|
|
topk_all=100,
|
|
|
iou_thres=0.45,
|
|
|
conf_thres=0.25,
|
|
|
prefix=colorstr('TensorFlow SavedModel:')):
|
|
|
# YOLOv5 TensorFlow SavedModel export
|
|
|
try:
|
|
|
import tensorflow as tf # noqa
|
|
|
except ImportError:
|
|
|
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
|
|
import tensorflow as tf # noqa
|
|
|
# from models.tf import TFModel
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
f = str(self.file).replace(self.file.suffix, '_saved_model')
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW
|
|
|
|
|
|
tf_models = None # TODO: no TF modules available
|
|
|
tf_model = tf_models.TFModel(cfg=self.model.yaml, model=self.model.cpu(), nc=self.model.nc, imgsz=imgsz)
|
|
|
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
|
|
_ = tf_model.predict(im, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if self.args.dynamic else batch_size)
|
|
|
outputs = tf_model.predict(inputs, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
|
|
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
|
|
keras_model.trainable = False
|
|
|
keras_model.summary()
|
|
|
if self.args.keras:
|
|
|
keras_model.save(f, save_format='tf')
|
|
|
else:
|
|
|
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
|
|
m = tf.function(lambda x: keras_model(x)) # full model
|
|
|
m = m.get_concrete_function(spec)
|
|
|
frozen_func = convert_variables_to_constants_v2(m)
|
|
|
tfm = tf.Module()
|
|
|
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if nms else frozen_func(x), [spec])
|
|
|
tfm.__call__(im)
|
|
|
tf.saved_model.save(tfm,
|
|
|
f,
|
|
|
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
|
|
|
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
|
|
return f, keras_model
|
|
|
|
|
|
@try_export
|
|
|
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
|
|
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
|
|
import tensorflow as tf # noqa
|
|
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
f = file.with_suffix('.pb')
|
|
|
|
|
|
m = tf.function(lambda x: keras_model(x)) # full model
|
|
|
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
|
|
frozen_func = convert_variables_to_constants_v2(m)
|
|
|
frozen_func.graph.as_graph_def()
|
|
|
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
|
|
# YOLOv5 TensorFlow Lite export
|
|
|
import tensorflow as tf # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
|
|
batch_size, ch, *imgsz = list(self.im.shape) # BCHW
|
|
|
f = str(self.file).replace(self.file.suffix, '-fp16.tflite')
|
|
|
|
|
|
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
|
|
converter.target_spec.supported_types = [tf.float16]
|
|
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
|
|
if int8:
|
|
|
|
|
|
def representative_dataset_gen(dataset, n_images=100):
|
|
|
# Dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
|
|
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
|
|
im = np.transpose(img, [1, 2, 0])
|
|
|
im = np.expand_dims(im, axis=0).astype(np.float32)
|
|
|
im /= 255
|
|
|
yield [im]
|
|
|
if n >= n_images:
|
|
|
break
|
|
|
|
|
|
dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False)
|
|
|
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100)
|
|
|
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
|
|
converter.target_spec.supported_types = []
|
|
|
converter.inference_input_type = tf.uint8 # or tf.int8
|
|
|
converter.inference_output_type = tf.uint8 # or tf.int8
|
|
|
converter.experimental_new_quantizer = True
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8.tflite')
|
|
|
if nms or agnostic_nms:
|
|
|
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
|
|
|
|
|
tflite_model = converter.convert()
|
|
|
open(f, "wb").write(tflite_model)
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
|
|
|
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
|
|
cmd = 'edgetpu_compiler --version'
|
|
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
|
|
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
|
|
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
|
|
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
|
|
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
|
|
for c in (
|
|
|
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
|
|
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' # no comma
|
|
|
'sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
|
|
'sudo apt-get update',
|
|
|
'sudo apt-get install edgetpu-compiler'):
|
|
|
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
|
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
|
|
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model
|
|
|
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model
|
|
|
|
|
|
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}"
|
|
|
subprocess.run(cmd.split(), check=True)
|
|
|
return f, None
|
|
|
|
|
|
@try_export
|
|
|
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
|
|
|
# YOLOv5 TensorFlow.js export
|
|
|
check_requirements('tensorflowjs')
|
|
|
import tensorflowjs as tfjs # noqa
|
|
|
|
|
|
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
|
|
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir
|
|
|
f_pb = self.file.with_suffix('.pb') # *.pb path
|
|
|
f_json = Path(f) / 'model.json' # *.json path
|
|
|
|
|
|
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
|
|
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
|
|
subprocess.run(cmd.split())
|
|
|
|
|
|
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
|
|
subst = re.sub(
|
|
|
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
|
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
|
|
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
|
|
r'"Identity_1": {"name": "Identity_1"}, '
|
|
|
r'"Identity_2": {"name": "Identity_2"}, '
|
|
|
r'"Identity_3": {"name": "Identity_3"}}}', f_json.read_text())
|
|
|
j.write(subst)
|
|
|
return f, None
|
|
|
|
|
|
def _add_tflite_metadata(self, file, num_outputs):
|
|
|
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
|
|
with contextlib.suppress(ImportError):
|
|
|
# check_requirements('tflite_support')
|
|
|
from tflite_support import flatbuffers # noqa
|
|
|
from tflite_support import metadata as _metadata # noqa
|
|
|
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa
|
|
|
|
|
|
tmp_file = Path('/tmp/meta.txt')
|
|
|
with open(tmp_file, 'w') as meta_f:
|
|
|
meta_f.write(str(self.metadata))
|
|
|
|
|
|
model_meta = _metadata_fb.ModelMetadataT()
|
|
|
label_file = _metadata_fb.AssociatedFileT()
|
|
|
label_file.name = tmp_file.name
|
|
|
model_meta.associatedFiles = [label_file]
|
|
|
|
|
|
subgraph = _metadata_fb.SubGraphMetadataT()
|
|
|
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
|
|
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
|
|
model_meta.subgraphMetadata = [subgraph]
|
|
|
|
|
|
b = flatbuffers.Builder(0)
|
|
|
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
|
|
metadata_buf = b.Output()
|
|
|
|
|
|
populator = _metadata.MetadataPopulator.with_model_file(file)
|
|
|
populator.load_metadata_buffer(metadata_buf)
|
|
|
populator.load_associated_files([str(tmp_file)])
|
|
|
populator.populate()
|
|
|
tmp_file.unlink()
|
|
|
|
|
|
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
|
|
# YOLOv5 CoreML pipeline
|
|
|
import coremltools as ct # noqa
|
|
|
|
|
|
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
|
|
|
batch_size, ch, h, w = list(self.im.shape) # BCHW
|
|
|
|
|
|
# Output shapes
|
|
|
spec = model.get_spec()
|
|
|
out0, out1 = iter(spec.description.output)
|
|
|
if MACOS:
|
|
|
from PIL import Image
|
|
|
img = Image.new('RGB', (w, h)) # img(192 width, 320 height)
|
|
|
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
|
|
|
out = model.predict({'image': img})
|
|
|
out0_shape = out[out0.name].shape
|
|
|
out1_shape = out[out1.name].shape
|
|
|
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
|
|
|
out0_shape = self.output_shape[1], self.output_shape[2] - 5 # (3780, 80)
|
|
|
out1_shape = self.output_shape[1], 4 # (3780, 4)
|
|
|
|
|
|
# Checks
|
|
|
names = self.metadata['names']
|
|
|
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
|
|
na, nc = out0_shape
|
|
|
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
|
|
|
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
|
|
|
|
|
|
# Define output shapes (missing)
|
|
|
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
|
|
|
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
|
|
|
# spec.neuralNetwork.preprocessing[0].featureName = '0'
|
|
|
|
|
|
# Flexible input shapes
|
|
|
# from coremltools.models.neural_network import flexible_shape_utils
|
|
|
# s = [] # shapes
|
|
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
|
|
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
|
|
|
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
|
|
|
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
|
|
|
# r.add_height_range((192, 640))
|
|
|
# r.add_width_range((192, 640))
|
|
|
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
|
|
|
|
|
|
# Print
|
|
|
print(spec.description)
|
|
|
|
|
|
# Model from spec
|
|
|
model = ct.models.MLModel(spec)
|
|
|
|
|
|
# 3. Create NMS protobuf
|
|
|
nms_spec = ct.proto.Model_pb2.Model()
|
|
|
nms_spec.specificationVersion = 5
|
|
|
for i in range(2):
|
|
|
decoder_output = model._spec.description.output[i].SerializeToString()
|
|
|
nms_spec.description.input.add()
|
|
|
nms_spec.description.input[i].ParseFromString(decoder_output)
|
|
|
nms_spec.description.output.add()
|
|
|
nms_spec.description.output[i].ParseFromString(decoder_output)
|
|
|
|
|
|
nms_spec.description.output[0].name = 'confidence'
|
|
|
nms_spec.description.output[1].name = 'coordinates'
|
|
|
|
|
|
output_sizes = [nc, 4]
|
|
|
for i in range(2):
|
|
|
ma_type = nms_spec.description.output[i].type.multiArrayType
|
|
|
ma_type.shapeRange.sizeRanges.add()
|
|
|
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
|
|
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
|
|
ma_type.shapeRange.sizeRanges.add()
|
|
|
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
|
|
|
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
|
|
|
del ma_type.shape[:]
|
|
|
|
|
|
nms = nms_spec.nonMaximumSuppression
|
|
|
nms.confidenceInputFeatureName = out0.name # 1x507x80
|
|
|
nms.coordinatesInputFeatureName = out1.name # 1x507x4
|
|
|
nms.confidenceOutputFeatureName = 'confidence'
|
|
|
nms.coordinatesOutputFeatureName = 'coordinates'
|
|
|
nms.iouThresholdInputFeatureName = 'iouThreshold'
|
|
|
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
|
|
|
nms.iouThreshold = 0.45
|
|
|
nms.confidenceThreshold = 0.25
|
|
|
nms.pickTop.perClass = True
|
|
|
nms.stringClassLabels.vector.extend(names.values())
|
|
|
nms_model = ct.models.MLModel(nms_spec)
|
|
|
|
|
|
# 4. Pipeline models together
|
|
|
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
|
|
|
('iouThreshold', ct.models.datatypes.Double()),
|
|
|
('confidenceThreshold', ct.models.datatypes.Double())],
|
|
|
output_features=['confidence', 'coordinates'])
|
|
|
pipeline.add_model(model)
|
|
|
pipeline.add_model(nms_model)
|
|
|
|
|
|
# Correct datatypes
|
|
|
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
|
|
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
|
|
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
|
|
|
|
|
# Update metadata
|
|
|
pipeline.spec.specificationVersion = 5
|
|
|
pipeline.spec.description.metadata.versionString = f'Ultralytics YOLOv{ultralytics.__version__}'
|
|
|
pipeline.spec.description.metadata.shortDescription = f'Ultralytics {self.pretty_name} CoreML model'
|
|
|
pipeline.spec.description.metadata.author = 'Ultralytics (https://ultralytics.com)'
|
|
|
pipeline.spec.description.metadata.license = 'GPL-3.0 license (https://ultralytics.com/license)'
|
|
|
pipeline.spec.description.metadata.userDefined.update({
|
|
|
'IoU threshold': str(nms.iouThreshold),
|
|
|
'Confidence threshold': str(nms.confidenceThreshold)})
|
|
|
|
|
|
# Save the model
|
|
|
model = ct.models.MLModel(pipeline.spec)
|
|
|
model.input_description['image'] = 'Input image'
|
|
|
model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})'
|
|
|
model.input_description['confidenceThreshold'] = \
|
|
|
f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})'
|
|
|
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
|
|
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
|
|
|
LOGGER.info(f'{prefix} pipeline success')
|
|
|
return model
|
|
|
|
|
|
def run_callbacks(self, event: str):
|
|
|
for callback in self.callbacks.get(event, []):
|
|
|
callback(self)
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
def export(cfg):
|
|
|
cfg.model = cfg.model or "yolov8n.yaml"
|
|
|
cfg.format = cfg.format or "torchscript"
|
|
|
|
|
|
# exporter = Exporter(cfg)
|
|
|
#
|
|
|
# model = None
|
|
|
# if isinstance(cfg.model, (str, Path)):
|
|
|
# if Path(cfg.model).suffix == '.yaml':
|
|
|
# model = DetectionModel(cfg.model)
|
|
|
# elif Path(cfg.model).suffix == '.pt':
|
|
|
# model = attempt_load_weights(cfg.model, fuse=True)
|
|
|
# else:
|
|
|
# TypeError(f'Unsupported model type {cfg.model}')
|
|
|
# exporter(model=model)
|
|
|
|
|
|
from ultralytics import YOLO
|
|
|
model = YOLO(cfg.model)
|
|
|
model.export(**cfg)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
"""
|
|
|
CLI:
|
|
|
yolo mode=export model=yolov8n.yaml format=onnx
|
|
|
"""
|
|
|
export()
|