You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
12 KiB
235 lines
12 KiB
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
"""
|
|
Common modules
|
|
"""
|
|
|
|
from copy import copy
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import pandas as pd
|
|
import requests
|
|
import torch
|
|
import torch.nn as nn
|
|
from PIL import Image, ImageOps
|
|
from torch.cuda import amp
|
|
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
from ultralytics.yolo.data.augment import LetterBox
|
|
from ultralytics.yolo.utils import LOGGER, colorstr
|
|
from ultralytics.yolo.utils.files import increment_path
|
|
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh
|
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
|
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
|
|
|
|
|
|
class AutoShape(nn.Module):
|
|
# YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
|
conf = 0.25 # NMS confidence threshold
|
|
iou = 0.45 # NMS IoU threshold
|
|
agnostic = False # NMS class-agnostic
|
|
multi_label = False # NMS multiple labels per box
|
|
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
|
max_det = 1000 # maximum number of detections per image
|
|
amp = False # Automatic Mixed Precision (AMP) inference
|
|
|
|
def __init__(self, model, verbose=True):
|
|
super().__init__()
|
|
if verbose:
|
|
LOGGER.info('Adding AutoShape... ')
|
|
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
|
self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance
|
|
self.pt = not self.dmb or model.pt # PyTorch model
|
|
self.model = model.eval()
|
|
if self.pt:
|
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
|
m.inplace = False # Detect.inplace=False for safe multithread inference
|
|
m.export = True # do not output loss values
|
|
|
|
def _apply(self, fn):
|
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
|
self = super()._apply(fn)
|
|
if self.pt:
|
|
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
|
m.stride = fn(m.stride)
|
|
m.grid = list(map(fn, m.grid))
|
|
if isinstance(m.anchor_grid, list):
|
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
return self
|
|
|
|
@smart_inference_mode()
|
|
def forward(self, ims, size=640, augment=False, profile=False):
|
|
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
|
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
|
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
|
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
|
# numpy: = np.zeros((640,1280,3)) # HWC
|
|
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
|
|
|
dt = (Profile(), Profile(), Profile())
|
|
with dt[0]:
|
|
if isinstance(size, int): # expand
|
|
size = (size, size)
|
|
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
|
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
|
if isinstance(ims, torch.Tensor): # torch
|
|
with amp.autocast(autocast):
|
|
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
|
|
|
# Preprocess
|
|
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
|
for i, im in enumerate(ims):
|
|
f = f'image{i}' # filename
|
|
if isinstance(im, (str, Path)): # filename or uri
|
|
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
|
im = np.asarray(ImageOps.exif_transpose(im))
|
|
elif isinstance(im, Image.Image): # PIL Image
|
|
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f
|
|
files.append(Path(f).with_suffix('.jpg').name)
|
|
if im.shape[0] < 5: # image in CHW
|
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
|
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
|
s = im.shape[:2] # HWC
|
|
shape0.append(s) # image shape
|
|
g = max(size) / max(s) # gain
|
|
shape1.append([y * g for y in s])
|
|
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
|
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
|
|
x = [LetterBox(shape1, auto=False)(image=im)['img'] for im in ims] # pad
|
|
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
|
|
|
with amp.autocast(autocast):
|
|
# Inference
|
|
with dt[1]:
|
|
y = self.model(x, augment=augment) # forward
|
|
|
|
# Postprocess
|
|
with dt[2]:
|
|
y = non_max_suppression(y if self.dmb else y[0],
|
|
self.conf,
|
|
self.iou,
|
|
self.classes,
|
|
self.agnostic,
|
|
self.multi_label,
|
|
max_det=self.max_det) # NMS
|
|
for i in range(n):
|
|
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
|
|
|
return Detections(ims, y, files, dt, self.names, x.shape)
|
|
|
|
|
|
class Detections:
|
|
# YOLOv8 detections class for inference results
|
|
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
|
super().__init__()
|
|
d = pred[0].device # device
|
|
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
|
self.ims = ims # list of images as numpy arrays
|
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
|
self.names = names # class names
|
|
self.files = files # image filenames
|
|
self.times = times # profiling times
|
|
self.xyxy = pred # xyxy pixels
|
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
|
self.n = len(self.pred) # number of images (batch size)
|
|
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
|
self.s = tuple(shape) # inference BCHW shape
|
|
|
|
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
|
s, crops = '', []
|
|
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
|
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
|
if pred.shape[0]:
|
|
for c in pred[:, -1].unique():
|
|
n = (pred[:, -1] == c).sum() # detections per class
|
|
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
s = s.rstrip(', ')
|
|
if show or save or render or crop:
|
|
annotator = Annotator(im, example=str(self.names))
|
|
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
|
label = f'{self.names[int(cls)]} {conf:.2f}'
|
|
if crop:
|
|
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
|
crops.append({
|
|
'box': box,
|
|
'conf': conf,
|
|
'cls': cls,
|
|
'label': label,
|
|
'im': save_one_box(box, im, file=file, save=save)})
|
|
else: # all others
|
|
annotator.box_label(box, label if labels else '', color=colors(cls))
|
|
im = annotator.im
|
|
else:
|
|
s += '(no detections)'
|
|
|
|
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
|
if show:
|
|
im.show(self.files[i]) # show
|
|
if save:
|
|
f = self.files[i]
|
|
im.save(save_dir / f) # save
|
|
if i == self.n - 1:
|
|
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
|
if render:
|
|
self.ims[i] = np.asarray(im)
|
|
if pprint:
|
|
s = s.lstrip('\n')
|
|
return f'{s}\nSpeed: %.1fms preprocess, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
|
if crop:
|
|
if save:
|
|
LOGGER.info(f'Saved results to {save_dir}\n')
|
|
return crops
|
|
|
|
def show(self, labels=True):
|
|
self._run(show=True, labels=labels) # show results
|
|
|
|
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
|
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
|
|
|
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
|
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
|
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
|
|
|
def render(self, labels=True):
|
|
self._run(render=True, labels=labels) # render results
|
|
return self.ims
|
|
|
|
def pandas(self):
|
|
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
|
new = copy(self) # return copy
|
|
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
|
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
|
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
|
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
|
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
|
return new
|
|
|
|
def tolist(self):
|
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
|
r = range(self.n) # iterable
|
|
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
|
# for d in x:
|
|
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
|
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
|
return x
|
|
|
|
def print(self):
|
|
LOGGER.info(self.__str__())
|
|
|
|
def __len__(self): # override len(results)
|
|
return self.n
|
|
|
|
def __str__(self): # override print(results)
|
|
return self._run(pprint=True) # print results
|
|
|
|
def __repr__(self):
|
|
return f'YOLOv8 {self.__class__} instance\n' + self.__str__()
|