You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

946 lines
39 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Model validation metrics
"""
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings
OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
# boxes
def box_area(box):
# box = xyxy(4,n)
return (box[2] - box[0]) * (box[3] - box[1])
def bbox_ioa(box1, box2, eps=1e-7):
"""
Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.
Args:
box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.
box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(np.array): A numpy array of shape (n, m) representing the intersection over box2 area.
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
# Intersection area
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
# Intersection over box2 area
return inter_area / box2_area
def box_iou(box1, box2, eps=1e-7):
"""
Calculate intersection-over-union (IoU) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
Args:
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
"""
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
"""
Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).
Args:
box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).
box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).
xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in
(x1, y1, x2, y2) format. Defaults to True.
GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.
DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.
CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
"""
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def mask_iou(mask1, mask2, eps=1e-7):
"""
Calculate masks IoU.
Args:
mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
product of image width and height.
mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the
product of image width and height.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing masks IoU.
"""
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
"""
Calculate Object Keypoint Similarity (OKS).
Args:
kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
sigma (list): A list containing 17 values representing keypoint scales.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
"""
d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17)
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
kpt_mask = kpt1[..., 2] != 0 # (N, 17)
e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
# return positive, negative label smoothing BCE targets
return 1.0 - 0.5 * eps, 0.5 * eps
# losses
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = torch.sigmoid(pred) # prob from logits
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = (1.0 - p_t) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class ConfusionMatrix:
"""
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
task (str): The type of task, either 'detect' or 'classify'.
matrix (np.array): The confusion matrix, with dimensions depending on the task.
nc (int): The number of classes.
conf (float): The confidence threshold for detections.
iou_thres (float): The Intersection over Union threshold.
"""
def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
self.task = task
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_cls_preds(self, preds, targets):
"""
Update confusion matrix for classification task
Args:
preds (Array[N, min(nc,5)]): Predicted class labels.
targets (Array[N, 1]): Ground truth class labels.
"""
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
self.matrix[t][p] += 1
def process_batch(self, detections, labels):
"""
Update confusion matrix for object detection task.
Args:
detections (Array[N, 6]): Detected bounding boxes and their associated information.
Each row should contain (x1, y1, x2, y2, conf, class).
labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels.
Each row should contain (class, x1, y1, x2, y2).
"""
if detections is None:
gt_classes = labels.int()
for gc in gt_classes:
self.matrix[self.nc, gc] += 1 # background FN
return
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # true background
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # predicted background
def matrix(self):
return self.matrix
def tp_fp(self):
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
@plt_settings()
def plot(self, normalize=True, save_dir='', names=()):
"""
Plot the confusion matrix using seaborn and save it to a file.
Args:
normalize (bool): Whether to normalize the confusion matrix.
save_dir (str): Directory where the plot will be saved.
names (tuple): Names of classes, used as labels on the plot.
"""
import seaborn as sn
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
nc, nn = self.nc, len(names) # number of classes, names
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
ticklabels = (names + ['background']) if labels else 'auto'
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array,
ax=ax,
annot=nc < 30,
annot_kws={
'size': 8},
cmap='Blues',
fmt='.2f',
square=True,
vmin=0.0,
xticklabels=ticklabels,
yticklabels=ticklabels).set_facecolor((1, 1, 1))
ax.set_xlabel('True')
ax.set_ylabel('Predicted')
ax.set_title('Confusion Matrix')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
plt.close(fig)
def print(self):
"""
Print the confusion matrix to the console.
"""
for i in range(self.nc + 1):
LOGGER.info(' '.join(map(str, self.matrix[i])))
def smooth(y, f=0.05):
# Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
# Precision-recall curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title('Precision-Recall Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
@plt_settings()
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
# Metric-confidence curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = smooth(py.mean(0), 0.05)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
ax.set_title(f'{ylabel}-Confidence Curve')
fig.savefig(save_dir, dpi=250)
plt.close(fig)
def compute_ap(recall, precision):
"""
Compute the average precision (AP) given the recall and precision curves.
Arguments:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
(float): Average precision.
(np.ndarray): Precision envelope curve.
(np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''):
"""
Computes the average precision per class for object detection evaluation.
Args:
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
conf (np.ndarray): Array of confidence scores of the detections.
pred_cls (np.ndarray): Array of predicted classes of the detections.
target_cls (np.ndarray): Array of true classes of the detections.
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
Returns:
(tuple): A tuple of six arrays and one array of unique classes, where:
tp (np.ndarray): True positive counts for each class.
fp (np.ndarray): False positive counts for each class.
p (np.ndarray): Precision values at each confidence threshold.
r (np.ndarray): Recall values at each confidence threshold.
f1 (np.ndarray): F1-score values at each confidence threshold.
ap (np.ndarray): Average precision for each class at different IoU thresholds.
unique_classes (np.ndarray): An array of unique classes that have data.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + eps)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = dict(enumerate(names)) # to dict
if plot:
plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names)
plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1')
plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision')
plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall')
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
class Metric(SimpleClass):
"""
Class for computing evaluation metrics for YOLOv8 model.
Attributes:
p (list): Precision for each class. Shape: (nc,).
r (list): Recall for each class. Shape: (nc,).
f1 (list): F1 score for each class. Shape: (nc,).
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
nc (int): Number of classes.
Methods:
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
mp(): Mean precision of all classes. Returns: Float.
mr(): Mean recall of all classes. Returns: Float.
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
mean_results(): Mean of results, returns mp, mr, map50, map.
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
update(results): Update metric attributes with new evaluation results.
"""
def __init__(self) -> None:
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
self.nc = 0
@property
def ap50(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
@property
def ap(self):
"""
Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
(np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
@property
def mp(self):
"""
Returns the Mean Precision of all classes.
Returns:
(float): The mean precision of all classes.
"""
return self.p.mean() if len(self.p) else 0.0
@property
def mr(self):
"""
Returns the Mean Recall of all classes.
Returns:
(float): The mean recall of all classes.
"""
return self.r.mean() if len(self.r) else 0.0
@property
def map50(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
(float): The mAP50 at an IoU threshold of 0.5.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
@property
def map75(self):
"""
Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
(float): The mAP50 at an IoU threshold of 0.75.
"""
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
@property
def map(self):
"""
Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
(float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
def mean_results(self):
"""Mean of results, return mp, mr, map50, map"""
return [self.mp, self.mr, self.map50, self.map]
def class_result(self, i):
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
return self.p[i], self.r[i], self.ap50[i], self.ap[i]
@property
def maps(self):
"""mAP of each class"""
maps = np.zeros(self.nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
def fitness(self):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (np.array(self.mean_results()) * w).sum()
def update(self, results):
"""
Args:
results (tuple): A tuple of (p, r, ap, f1, ap_class)
"""
self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results
class DetMetrics(SimpleClass):
"""
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
(mAP) of an object detection model.
Args:
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
Attributes:
save_dir (Path): A path to the directory where the output plots will be saved.
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
names (tuple of str): A tuple of strings that represents the names of the classes.
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
Methods:
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
keys: Returns a list of keys for accessing the computed detection metrics.
mean_results: Returns a list of mean values for the computed detection metrics.
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
fitness: Computes the fitness score based on the computed detection metrics.
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
"""
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.box = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, tp, conf, pred_cls, target_cls):
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
names=self.names)[2:]
self.box.nc = len(self.names)
self.box.update(results)
@property
def keys(self):
return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
def mean_results(self):
return self.box.mean_results()
def class_result(self, i):
return self.box.class_result(i)
@property
def maps(self):
return self.box.maps
@property
def fitness(self):
return self.box.fitness()
@property
def ap_class_index(self):
return self.box.ap_class_index
@property
def results_dict(self):
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
class SegmentMetrics(SimpleClass):
"""
Calculates and aggregates detection and segmentation metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.box = Metric()
self.seg = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
"""
Processes the detection and segmentation metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_m (list): List of True Positive masks.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_mask = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix='Mask')[2:]
self.seg.nc = len(self.names)
self.seg.update(results_mask)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']
def mean_results(self):
return self.box.mean_results() + self.seg.mean_results()
def class_result(self, i):
return self.box.class_result(i) + self.seg.class_result(i)
@property
def maps(self):
return self.box.maps + self.seg.maps
@property
def fitness(self):
return self.seg.fitness() + self.box.fitness()
@property
def ap_class_index(self):
# boxes and masks have the same ap_class_index
return self.box.ap_class_index
@property
def results_dict(self):
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
class PoseMetrics(SegmentMetrics):
"""
Calculates and aggregates detection and pose metrics over a given set of classes.
Args:
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
plot (bool): Whether to save the detection and segmentation plots. Default is False.
names (list): List of class names. Default is an empty list.
Attributes:
save_dir (Path): Path to the directory where the output plots should be saved.
plot (bool): Whether to save the detection and segmentation plots.
names (list): List of class names.
box (Metric): An instance of the Metric class to calculate box detection metrics.
pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict): Dictionary to store the time taken in different phases of inference.
Methods:
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
class_result(i): Returns the detection and segmentation metrics of class `i`.
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
"""
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
super().__init__(save_dir, plot, names)
self.save_dir = save_dir
self.plot = plot
self.names = names
self.box = Metric()
self.pose = Metric()
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def __getattr__(self, attr):
name = self.__class__.__name__
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
"""
Processes the detection and pose metrics over the given set of predictions.
Args:
tp_b (list): List of True Positive boxes.
tp_p (list): List of True Positive keypoints.
conf (list): List of confidence scores.
pred_cls (list): List of predicted classes.
target_cls (list): List of target classes.
"""
results_pose = ap_per_class(tp_p,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix='Pose')[2:]
self.pose.nc = len(self.names)
self.pose.update(results_pose)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix='Box')[2:]
self.box.nc = len(self.names)
self.box.update(results_box)
@property
def keys(self):
return [
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']
def mean_results(self):
return self.box.mean_results() + self.pose.mean_results()
def class_result(self, i):
return self.box.class_result(i) + self.pose.class_result(i)
@property
def maps(self):
return self.box.maps + self.pose.maps
@property
def fitness(self):
return self.pose.fitness() + self.box.fitness()
class ClassifyMetrics(SimpleClass):
"""
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
top1 (float): The top-1 accuracy.
top5 (float): The top-5 accuracy.
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
Properties:
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
keys (List[str]): A list of keys for the results_dict.
Methods:
process(targets, pred): Processes the targets and predictions to compute classification metrics.
"""
def __init__(self) -> None:
self.top1 = 0
self.top5 = 0
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
def process(self, targets, pred):
# target classes and predicted classes
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
@property
def fitness(self):
return self.top5
@property
def results_dict(self):
return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))
@property
def keys(self):
return ['metrics/accuracy_top1', 'metrics/accuracy_top5']