You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
9.1 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
from pathlib import Path
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
"classify": [
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
'yolo.TYPE.classify.ClassificationPredictor'],
"detect": [
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
'yolo.TYPE.detect.DetectionPredictor'],
"segment": [
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
'yolo.TYPE.segment.SegmentationPredictor']}
class YOLO:
"""
YOLO
A python interface which emulates a model-like behaviour by wrapping trainers.
"""
def __init__(self, model='yolov8n.yaml', type="v8") -> None:
"""
Initializes the YOLO object.
Args:
model (str, Path): model to load or create
type (str): Type/version of models to use. Defaults to "v8".
"""
self.type = type
self.ModelClass = None # model class
self.TrainerClass = None # trainer class
self.ValidatorClass = None # validator class
self.PredictorClass = None # predictor class
self.predictor = None # reuse predictor
self.model = None # model object
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
# Load or create new YOLO model
{'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model)
def __call__(self, source=None, stream=False, verbose=False, **kwargs):
return self.predict(source, stream, verbose, **kwargs)
def _new(self, cfg: str, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
verbose (bool): display model info on load
"""
cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(cfg, append_filename=True) # model dict
self.task = guess_task_from_head(cfg_dict["head"][-1][-2])
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize
self.cfg = cfg
def _load(self, weights: str):
"""
Initializes a new model and infers the task type from the model head.
Args:
weights (str): model checkpoint to be loaded
"""
self.model, self.ckpt = attempt_load_one_weight(weights)
self.ckpt_path = weights
self.task = self.model.args["task"]
self.overrides = self.model.args
self._reset_ckpt_args(self.overrides)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
self._guess_ops_from_task(self.task)
def reset(self):
"""
Resets the model modules.
"""
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
def info(self, verbose=False):
"""
Logs model info.
Args:
verbose (bool): Controls verbosity.
"""
self.model.info(verbose=verbose)
def fuse(self):
self.model.fuse()
@smart_inference_mode()
def predict(self, source=None, stream=False, verbose=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
verbose (bool): Whether to print verbose information or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(dict): The prediction results.
"""
overrides = self.overrides.copy()
overrides["conf"] = 0.25
overrides.update(kwargs)
overrides["mode"] = "predict"
overrides["save"] = kwargs.get("save", False) # not save files by default
if not self.predictor:
self.predictor = self.PredictorClass(overrides=overrides)
self.predictor.setup_model(model=self.model)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, overrides)
return self.predictor(source=source, stream=stream, verbose=verbose)
@smart_inference_mode()
def val(self, data=None, **kwargs):
"""
Validate a model on a given dataset .
Args:
data (str): The dataset to validate on. Accepts all formats accepted by yolo
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
overrides["mode"] = "val"
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.data = data or args.data
args.task = self.task
validator = self.ValidatorClass(args=args)
validator(model=self.model)
@smart_inference_mode()
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
print(args)
exporter = Exporter(overrides=args)
exporter(model=self.model)
def train(self, **kwargs):
"""
Trains the model on a given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=True)
overrides["task"] = self.task
overrides["mode"] = "train"
if not overrides.get("data"):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get("resume"):
overrides["resume"] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
if not overrides.get("resume"): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
self.trainer.train()
# update model and cfg after training
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
def to(self, device):
"""
Sends the model to the given device.
Args:
device (str): device
"""
self.model.to(device)
def _guess_ops_from_task(self, task):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
return model_class, trainer_class, validator_class, predictor_class
@property
def names(self):
"""
Returns class names of the loaded model.
"""
return self.model.names
@staticmethod
def _reset_ckpt_args(args):
args.pop("project", None)
args.pop("name", None)
args.pop("exist_ok", None)
args.pop("resume", None)
args.pop("batch", None)
args.pop("epochs", None)
args.pop("cache", None)
args.pop("save_json", None)
args.pop("half", None)
args.pop("v5loader", None)
# set device to '' to prevent from auto DDP usage
args["device"] = ''