You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

264 lines
13 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.optimize import linear_sum_assignment
from ultralytics.yolo.utils.metrics import bbox_iou
from ultralytics.yolo.utils.ops import xywh2xyxy, xyxy2xywh
class HungarianMatcher(nn.Module):
"""
A module implementing the HungarianMatcher, which is a differentiable module to solve the assignment problem in
an end-to-end fashion.
HungarianMatcher performs optimal assignment over predicted and ground truth bounding boxes using a cost function
that considers classification scores, bounding box coordinates, and optionally, mask predictions.
Attributes:
cost_gain (dict): Dictionary of cost coefficients for different components: 'class', 'bbox', 'giou', 'mask', and 'dice'.
use_fl (bool): Indicates whether to use Focal Loss for the classification cost calculation.
with_mask (bool): Indicates whether the model makes mask predictions.
num_sample_points (int): The number of sample points used in mask cost calculation.
alpha (float): The alpha factor in Focal Loss calculation.
gamma (float): The gamma factor in Focal Loss calculation.
Methods:
forward(pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None): Computes the assignment
between predictions and ground truths for a batch.
_cost_mask(bs, num_gts, masks=None, gt_mask=None): Computes the mask cost and dice cost if masks are predicted.
"""
class HungarianMatcher(nn.Module):
...
def __init__(self, cost_gain=None, use_fl=True, with_mask=False, num_sample_points=12544, alpha=0.25, gamma=2.0):
super().__init__()
if cost_gain is None:
cost_gain = {'class': 1, 'bbox': 5, 'giou': 2, 'mask': 1, 'dice': 1}
self.cost_gain = cost_gain
self.use_fl = use_fl
self.with_mask = with_mask
self.num_sample_points = num_sample_points
self.alpha = alpha
self.gamma = gamma
def forward(self, pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=None, gt_mask=None):
"""
Forward pass for HungarianMatcher. This function computes costs based on prediction and ground truth
(classification cost, L1 cost between boxes and GIoU cost between boxes) and finds the optimal matching
between predictions and ground truth based on these costs.
Args:
pred_bboxes (Tensor): Predicted bounding boxes with shape [batch_size, num_queries, 4].
pred_scores (Tensor): Predicted scores with shape [batch_size, num_queries, num_classes].
gt_cls (torch.Tensor): Ground truth classes with shape [num_gts, ].
gt_bboxes (torch.Tensor): Ground truth bounding boxes with shape [num_gts, 4].
gt_groups (List[int]): List of length equal to batch size, containing the number of ground truths for
each image.
masks (Tensor, optional): Predicted masks with shape [batch_size, num_queries, height, width].
Defaults to None.
gt_mask (List[Tensor], optional): List of ground truth masks, each with shape [num_masks, Height, Width].
Defaults to None.
Returns:
(List[Tuple[Tensor, Tensor]]): A list of size batch_size, each element is a tuple (index_i, index_j), where:
- index_i is the tensor of indices of the selected predictions (in order)
- index_j is the tensor of indices of the corresponding selected ground truth targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
bs, nq, nc = pred_scores.shape
if sum(gt_groups) == 0:
return [(torch.tensor([], dtype=torch.int32), torch.tensor([], dtype=torch.int32)) for _ in range(bs)]
# We flatten to compute the cost matrices in a batch
# [batch_size * num_queries, num_classes]
pred_scores = pred_scores.detach().view(-1, nc)
pred_scores = F.sigmoid(pred_scores) if self.use_fl else F.softmax(pred_scores, dim=-1)
# [batch_size * num_queries, 4]
pred_bboxes = pred_bboxes.detach().view(-1, 4)
# Compute the classification cost
pred_scores = pred_scores[:, gt_cls]
if self.use_fl:
neg_cost_class = (1 - self.alpha) * (pred_scores ** self.gamma) * (-(1 - pred_scores + 1e-8).log())
pos_cost_class = self.alpha * ((1 - pred_scores) ** self.gamma) * (-(pred_scores + 1e-8).log())
cost_class = pos_cost_class - neg_cost_class
else:
cost_class = -pred_scores
# Compute the L1 cost between boxes
cost_bbox = (pred_bboxes.unsqueeze(1) - gt_bboxes.unsqueeze(0)).abs().sum(-1) # (bs*num_queries, num_gt)
# Compute the GIoU cost between boxes, (bs*num_queries, num_gt)
cost_giou = 1.0 - bbox_iou(pred_bboxes.unsqueeze(1), gt_bboxes.unsqueeze(0), xywh=True, GIoU=True).squeeze(-1)
# Final cost matrix
C = self.cost_gain['class'] * cost_class + \
self.cost_gain['bbox'] * cost_bbox + \
self.cost_gain['giou'] * cost_giou
# Compute the mask cost and dice cost
if self.with_mask:
C += self._cost_mask(bs, gt_groups, masks, gt_mask)
C = C.view(bs, nq, -1).cpu()
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(gt_groups, -1))]
gt_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
# (idx for queries, idx for gt)
return [(torch.tensor(i, dtype=torch.int32), torch.tensor(j, dtype=torch.int32) + gt_groups[k])
for k, (i, j) in enumerate(indices)]
def _cost_mask(self, bs, num_gts, masks=None, gt_mask=None):
assert masks is not None and gt_mask is not None, 'Make sure the input has `mask` and `gt_mask`'
# all masks share the same set of points for efficient matching
sample_points = torch.rand([bs, 1, self.num_sample_points, 2])
sample_points = 2.0 * sample_points - 1.0
out_mask = F.grid_sample(masks.detach(), sample_points, align_corners=False).squeeze(-2)
out_mask = out_mask.flatten(0, 1)
tgt_mask = torch.cat(gt_mask).unsqueeze(1)
sample_points = torch.cat([a.repeat(b, 1, 1, 1) for a, b in zip(sample_points, num_gts) if b > 0])
tgt_mask = F.grid_sample(tgt_mask, sample_points, align_corners=False).squeeze([1, 2])
with torch.cuda.amp.autocast(False):
# binary cross entropy cost
pos_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.ones_like(out_mask), reduction='none')
neg_cost_mask = F.binary_cross_entropy_with_logits(out_mask, torch.zeros_like(out_mask), reduction='none')
cost_mask = torch.matmul(pos_cost_mask, tgt_mask.T) + torch.matmul(neg_cost_mask, 1 - tgt_mask.T)
cost_mask /= self.num_sample_points
# dice cost
out_mask = F.sigmoid(out_mask)
numerator = 2 * torch.matmul(out_mask, tgt_mask.T)
denominator = out_mask.sum(-1, keepdim=True) + tgt_mask.sum(-1).unsqueeze(0)
cost_dice = 1 - (numerator + 1) / (denominator + 1)
C = self.cost_gain['mask'] * cost_mask + self.cost_gain['dice'] * cost_dice
return C
def get_cdn_group(batch,
num_classes,
num_queries,
class_embed,
num_dn=100,
cls_noise_ratio=0.5,
box_noise_scale=1.0,
training=False):
"""
Get contrastive denoising training group. This function creates a contrastive denoising training group with
positive and negative samples from the ground truths (gt). It applies noise to the class labels and bounding
box coordinates, and returns the modified labels, bounding boxes, attention mask and meta information.
Args:
batch (dict): A dict that includes 'gt_cls' (torch.Tensor with shape [num_gts, ]), 'gt_bboxes'
(torch.Tensor with shape [num_gts, 4]), 'gt_groups' (List(int)) which is a list of batch size length
indicating the number of gts of each image.
num_classes (int): Number of classes.
num_queries (int): Number of queries.
class_embed (torch.Tensor): Embedding weights to map class labels to embedding space.
num_dn (int, optional): Number of denoising. Defaults to 100.
cls_noise_ratio (float, optional): Noise ratio for class labels. Defaults to 0.5.
box_noise_scale (float, optional): Noise scale for bounding box coordinates. Defaults to 1.0.
training (bool, optional): If it's in training mode. Defaults to False.
Returns:
(Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Dict]]): The modified class embeddings,
bounding boxes, attention mask and meta information for denoising. If not in training mode or 'num_dn'
is less than or equal to 0, the function returns None for all elements in the tuple.
"""
if (not training) or num_dn <= 0:
return None, None, None, None
gt_groups = batch['gt_groups']
total_num = sum(gt_groups)
max_nums = max(gt_groups)
if max_nums == 0:
return None, None, None, None
num_group = num_dn // max_nums
num_group = 1 if num_group == 0 else num_group
# pad gt to max_num of a batch
bs = len(gt_groups)
gt_cls = batch['cls'] # (bs*num, )
gt_bbox = batch['bboxes'] # bs*num, 4
b_idx = batch['batch_idx']
# each group has positive and negative queries.
dn_cls = gt_cls.repeat(2 * num_group) # (2*num_group*bs*num, )
dn_bbox = gt_bbox.repeat(2 * num_group, 1) # 2*num_group*bs*num, 4
dn_b_idx = b_idx.repeat(2 * num_group).view(-1) # (2*num_group*bs*num, )
# positive and negative mask
# (bs*num*num_group, ), the second total_num*num_group part as negative samples
neg_idx = torch.arange(total_num * num_group, dtype=torch.long, device=gt_bbox.device) + num_group * total_num
if cls_noise_ratio > 0:
# half of bbox prob
mask = torch.rand(dn_cls.shape) < (cls_noise_ratio * 0.5)
idx = torch.nonzero(mask).squeeze(-1)
# randomly put a new one here
new_label = torch.randint_like(idx, 0, num_classes, dtype=dn_cls.dtype, device=dn_cls.device)
dn_cls[idx] = new_label
if box_noise_scale > 0:
known_bbox = xywh2xyxy(dn_bbox)
diff = (dn_bbox[..., 2:] * 0.5).repeat(1, 2) * box_noise_scale # 2*num_group*bs*num, 4
rand_sign = torch.randint_like(dn_bbox, 0, 2) * 2.0 - 1.0
rand_part = torch.rand_like(dn_bbox)
rand_part[neg_idx] += 1.0
rand_part *= rand_sign
known_bbox += rand_part * diff
known_bbox.clip_(min=0.0, max=1.0)
dn_bbox = xyxy2xywh(known_bbox)
dn_bbox = inverse_sigmoid(dn_bbox)
# total denoising queries
num_dn = int(max_nums * 2 * num_group)
# class_embed = torch.cat([class_embed, torch.zeros([1, class_embed.shape[-1]], device=class_embed.device)])
dn_cls_embed = class_embed[dn_cls] # bs*num * 2 * num_group, 256
padding_cls = torch.zeros(bs, num_dn, dn_cls_embed.shape[-1], device=gt_cls.device)
padding_bbox = torch.zeros(bs, num_dn, 4, device=gt_bbox.device)
map_indices = torch.cat([torch.tensor(range(num), dtype=torch.long) for num in gt_groups])
pos_idx = torch.stack([map_indices + max_nums * i for i in range(num_group)], dim=0)
map_indices = torch.cat([map_indices + max_nums * i for i in range(2 * num_group)])
padding_cls[(dn_b_idx, map_indices)] = dn_cls_embed
padding_bbox[(dn_b_idx, map_indices)] = dn_bbox
tgt_size = num_dn + num_queries
attn_mask = torch.zeros([tgt_size, tgt_size], dtype=torch.bool)
# match query cannot see the reconstruct
attn_mask[num_dn:, :num_dn] = True
# reconstruct cannot see each other
for i in range(num_group):
if i == 0:
attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), max_nums * 2 * (i + 1):num_dn] = True
if i == num_group - 1:
attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), :max_nums * i * 2] = True
else:
attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), max_nums * 2 * (i + 1):num_dn] = True
attn_mask[max_nums * 2 * i:max_nums * 2 * (i + 1), :max_nums * 2 * i] = True
dn_meta = {
'dn_pos_idx': [p.reshape(-1) for p in pos_idx.cpu().split(list(gt_groups), dim=1)],
'dn_num_group': num_group,
'dn_num_split': [num_dn, num_queries]}
return padding_cls.to(class_embed.device), padding_bbox.to(class_embed.device), attn_mask.to(
class_embed.device), dn_meta
def inverse_sigmoid(x, eps=1e-6):
"""Inverse sigmoid function."""
x = x.clip(min=0., max=1.)
return torch.log(x / (1 - x + eps) + eps)