You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
2.6 KiB

from ultralytics import YOLO
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT
from ultralytics.yolo.v8 import classify, detect, segment
CFG_DET = 'yolov8n.yaml'
CFG_SEG = 'yolov8n-seg.yaml'
CFG_CLS = 'squeezenet1_0'
CFG = get_config(DEFAULT_CONFIG)
SOURCE = ROOT / "assets"
def test_detect():
overrides = {"data": "coco128.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco128.yaml"
# trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = detect.DetectionValidator(args=CFG)
val(model=trained_model)
# predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [640, 640]})
pred(source=SOURCE, model=trained_model)
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_segment():
overrides = {"data": "coco128-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False}
CFG.data = "coco128-seg.yaml"
CFG.v5loader = False
# YOLO(CFG_SEG).train(**overrides) # This works
# trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = segment.SegmentationValidator(args=CFG)
val(model=trained_model)
# predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [640, 640]})
pred(source=SOURCE, model=trained_model)
# test resume
overrides["resume"] = trainer.last
trainer = segment.SegmentationTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f"Expected exception caught: {e}")
return
Exception("Resume test failed!")
def test_classify():
overrides = {
"data": "imagenette160",
"model": "squeezenet1_0",
"imgsz": 32,
"epochs": 1,
"batch": 64,
"save": False}
CFG.data = "imagenette160"
CFG.imgsz = 32
CFG.batch = 64
# YOLO(CFG_SEG).train(**overrides) # This works
# trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = classify.ClassificationValidator(args=CFG)
val(model=trained_model)
# predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [640, 640]})
pred(source=SOURCE, model=trained_model)