You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.3 KiB
126 lines
4.3 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from pathlib import Path
|
|
|
|
from ultralytics import YOLO
|
|
from ultralytics.cfg import get_cfg
|
|
from ultralytics.engine.exporter import Exporter
|
|
from ultralytics.models.yolo import classify, detect, segment
|
|
from ultralytics.utils import ASSETS, DEFAULT_CFG, SETTINGS
|
|
|
|
CFG_DET = 'yolov8n.yaml'
|
|
CFG_SEG = 'yolov8n-seg.yaml'
|
|
CFG_CLS = 'yolov8n-cls.yaml' # or 'squeezenet1_0'
|
|
CFG = get_cfg(DEFAULT_CFG)
|
|
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
|
|
|
|
|
|
def test_func(*args): # noqa
|
|
print('callback test passed')
|
|
|
|
|
|
def test_export():
|
|
exporter = Exporter()
|
|
exporter.add_callback('on_export_start', test_func)
|
|
assert test_func in exporter.callbacks['on_export_start'], 'callback test failed'
|
|
f = exporter(model=YOLO(CFG_DET).model)
|
|
YOLO(f)(ASSETS) # exported model inference
|
|
|
|
|
|
def test_detect():
|
|
overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False}
|
|
CFG.data = 'coco8.yaml'
|
|
CFG.imgsz = 32
|
|
|
|
# Trainer
|
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
|
trainer.add_callback('on_train_start', test_func)
|
|
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
|
trainer.train()
|
|
|
|
# Validator
|
|
val = detect.DetectionValidator(args=CFG)
|
|
val.add_callback('on_val_start', test_func)
|
|
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
|
val(model=trainer.best) # validate best.pt
|
|
|
|
# Predictor
|
|
pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]})
|
|
pred.add_callback('on_predict_start', test_func)
|
|
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
|
result = pred(source=ASSETS, model=f'{MODEL}.pt')
|
|
assert len(result), 'predictor test failed'
|
|
|
|
overrides['resume'] = trainer.last
|
|
trainer = detect.DetectionTrainer(overrides=overrides)
|
|
try:
|
|
trainer.train()
|
|
except Exception as e:
|
|
print(f'Expected exception caught: {e}')
|
|
return
|
|
|
|
Exception('Resume test failed!')
|
|
|
|
|
|
def test_segment():
|
|
overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False}
|
|
CFG.data = 'coco8-seg.yaml'
|
|
CFG.imgsz = 32
|
|
# YOLO(CFG_SEG).train(**overrides) # works
|
|
|
|
# trainer
|
|
trainer = segment.SegmentationTrainer(overrides=overrides)
|
|
trainer.add_callback('on_train_start', test_func)
|
|
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
|
trainer.train()
|
|
|
|
# Validator
|
|
val = segment.SegmentationValidator(args=CFG)
|
|
val.add_callback('on_val_start', test_func)
|
|
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
|
val(model=trainer.best) # validate best.pt
|
|
|
|
# Predictor
|
|
pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]})
|
|
pred.add_callback('on_predict_start', test_func)
|
|
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
|
result = pred(source=ASSETS, model=f'{MODEL}-seg.pt')
|
|
assert len(result), 'predictor test failed'
|
|
|
|
# Test resume
|
|
overrides['resume'] = trainer.last
|
|
trainer = segment.SegmentationTrainer(overrides=overrides)
|
|
try:
|
|
trainer.train()
|
|
except Exception as e:
|
|
print(f'Expected exception caught: {e}')
|
|
return
|
|
|
|
Exception('Resume test failed!')
|
|
|
|
|
|
def test_classify():
|
|
overrides = {'data': 'imagenet10', 'model': CFG_CLS, 'imgsz': 32, 'epochs': 1, 'save': False}
|
|
CFG.data = 'imagenet10'
|
|
CFG.imgsz = 32
|
|
# YOLO(CFG_SEG).train(**overrides) # works
|
|
|
|
# Trainer
|
|
trainer = classify.ClassificationTrainer(overrides=overrides)
|
|
trainer.add_callback('on_train_start', test_func)
|
|
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
|
trainer.train()
|
|
|
|
# Validator
|
|
val = classify.ClassificationValidator(args=CFG)
|
|
val.add_callback('on_val_start', test_func)
|
|
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
|
val(model=trainer.best)
|
|
|
|
# Predictor
|
|
pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]})
|
|
pred.add_callback('on_predict_start', test_func)
|
|
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
|
result = pred(source=ASSETS, model=trainer.best)
|
|
assert len(result), 'predictor test failed'
|