`ultralytics 8.0.108` add Meituan YOLOv6 models (#2811)

Co-authored-by: Michael Currie <mcurrie@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hicham Talaoubrid <98521878+HichTala@users.noreply.github.com>
Co-authored-by: Zlobin Vladimir <vladimir.zlobin@intel.com>
Co-authored-by: Szymon Mikler <sjmikler@gmail.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 07b57c03c8
commit ffc0e8ccf7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -93,7 +93,7 @@ model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
model.train(data="coco128.yaml", epochs=3) # train the model model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
success = model.export(format="onnx") # export the model to ONNX format path = model.export(format="onnx") # export the model to ONNX format
``` ```
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples. [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.

@ -29,7 +29,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u
# Install pip packages # Install pip packages
RUN python3 -m pip install --upgrade pip wheel RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . albumentations comet tensorboard thop RUN pip install --no-cache -e . albumentations comet tensorboard thop pycocotools
# Set environment variables # Set environment variables
ENV OMP_NUM_THREADS=1 ENV OMP_NUM_THREADS=1

@ -11,6 +11,7 @@ In this documentation, we provide information on four major models:
1. [YOLOv3](./yolov3.md): The third iteration of the YOLO model family, known for its efficient real-time object detection capabilities. 1. [YOLOv3](./yolov3.md): The third iteration of the YOLO model family, known for its efficient real-time object detection capabilities.
2. [YOLOv5](./yolov5.md): An improved version of the YOLO architecture, offering better performance and speed tradeoffs compared to previous versions. 2. [YOLOv5](./yolov5.md): An improved version of the YOLO architecture, offering better performance and speed tradeoffs compared to previous versions.
3. [YOLOv6](./yolov6.md): Released by [Meituan](https://about.meituan.com/) in 2022 and is in use in many of the company's autonomous delivery robots.
3. [YOLOv8](./yolov8.md): The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification. 3. [YOLOv8](./yolov8.md): The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification.
4. [Segment Anything Model (SAM)](./sam.md): Meta's Segment Anything Model (SAM). 4. [Segment Anything Model (SAM)](./sam.md): Meta's Segment Anything Model (SAM).
5. [Realtime Detection Transformers (RT-DETR)](./rtdetr.md): Baidu's RT-DETR model. 5. [Realtime Detection Transformers (RT-DETR)](./rtdetr.md): Baidu's RT-DETR model.

@ -26,7 +26,7 @@ For more information about the Segment Anything Model and the SA-1B dataset, ple
SAM can be used for a variety of downstream tasks involving object and image distributions beyond its training data. Examples include edge detection, object proposal generation, instance segmentation, and preliminary text-to-mask prediction. By employing prompt engineering, SAM can adapt to new tasks and data distributions in a zero-shot manner, making it a versatile and powerful tool for image segmentation tasks. SAM can be used for a variety of downstream tasks involving object and image distributions beyond its training data. Examples include edge detection, object proposal generation, instance segmentation, and preliminary text-to-mask prediction. By employing prompt engineering, SAM can adapt to new tasks and data distributions in a zero-shot manner, making it a versatile and powerful tool for image segmentation tasks.
```python ```python
from ultralytics.vit import SAM from ultralytics import SAM
model = SAM('sam_b.pt') model = SAM('sam_b.pt')
model.info() # display model information model.info() # display model information

@ -0,0 +1,81 @@
---
comments: true
description: Discover Meituan YOLOv6, a robust real-time object detector. Learn how to utilize pre-trained models with Ultralytics Python API for a variety of tasks.
---
# Meituan YOLOv6
## Overview
[Meituan](https://about.meituan.com/) YOLOv6 is a cutting-edge object detector that offers remarkable balance between speed and accuracy, making it a popular choice for real-time applications. This model introduces several notable enhancements on its architecture and training scheme, including the implementation of a Bi-directional Concatenation (BiC) module, an anchor-aided training (AAT) strategy, and an improved backbone and neck design for state-of-the-art accuracy on the COCO dataset.
![Meituan YOLOv6](https://user-images.githubusercontent.com/26833433/240750495-4da954ce-8b3b-41c4-8afd-ddb74361d3c2.png)
![Model example image](https://user-images.githubusercontent.com/26833433/240750557-3e9ec4f0-0598-49a8-83ea-f33c91eb6d68.png)
**Overview of YOLOv6.** Model architecture diagram showing the redesigned network components and training strategies that have led to significant performance improvements. (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep. (b) The
structure of a BiC module. (c) A SimCSPSPPF block. ([source](https://arxiv.org/pdf/2301.05586.pdf)).
### Key Features
- **Bi-directional Concatenation (BiC) Module:** YOLOv6 introduces a BiC module in the neck of the detector, enhancing localization signals and delivering performance gains with negligible speed degradation.
- **Anchor-Aided Training (AAT) Strategy:** This model proposes AAT to enjoy the benefits of both anchor-based and anchor-free paradigms without compromising inference efficiency.
- **Enhanced Backbone and Neck Design:** By deepening YOLOv6 to include another stage in the backbone and neck, this model achieves state-of-the-art performance on the COCO dataset at high-resolution input.
- **Self-Distillation Strategy:** A new self-distillation strategy is implemented to boost the performance of smaller models of YOLOv6, enhancing the auxiliary regression branch during training and removing it at inference to avoid a marked speed decline.
## Pre-trained Models
YOLOv6 provides various pre-trained models with different scales:
- YOLOv6-N: 37.5% AP on COCO val2017 at 1187 FPS with NVIDIA Tesla T4 GPU.
- YOLOv6-S: 45.0% AP at 484 FPS.
- YOLOv6-M: 50.0% AP at 226 FPS.
- YOLOv6-L: 52.8% AP at 116 FPS.
- YOLOv6-L6: State-of-the-art accuracy in real-time.
YOLOv6 also provides quantized models for different precisions and models optimized for mobile platforms.
## Usage
### Python API
```python
from ultralytics import YOLO
model = YOLO("yolov6n.yaml") # build new model from scratch
model.info() # display model information
model.predict("path/to/image.jpg") # predict
```
### Supported Tasks
| Model Type | Pre-trained Weights | Tasks Supported |
|------------|---------------------|------------------|
| YOLOv6-N | `yolov6-n.pt` | Object Detection |
| YOLOv6-S | `yolov6-s.pt` | Object Detection |
| YOLOv6-M | `yolov6-m.pt` | Object Detection |
| YOLOv6-L | `yolov6-l.pt` | Object Detection |
| YOLOv6-L6 | `yolov6-l6.pt` | Object Detection |
## Supported Modes
| Mode | Supported |
|------------|--------------------|
| Inference | :heavy_check_mark: |
| Validation | :heavy_check_mark: |
| Training | :heavy_check_mark: |
## Citations and Acknowledgements
We would like to acknowledge the authors for their significant contributions in the field of real-time object detection:
```bibtex
@misc{li2023yolov6,
title={YOLOv6 v3.0: A Full-Scale Reloading},
author={Chuyi Li and Lulu Li and Yifei Geng and Hongliang Jiang and Meng Cheng and Bo Zhang and Zaidan Ke and Xiaoming Xu and Xiangxiang Chu},
year={2023},
eprint={2301.05586},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
The original YOLOv6 paper can be found on [arXiv](https://arxiv.org/abs/2301.05586). The authors have made their work publicly available, and the codebase can be accessed on [GitHub](https://github.com/meituan/YOLOv6). We appreciate their efforts in advancing the field and making their work accessible to the broader community.

@ -50,14 +50,14 @@ To install the required packages, run:
The `tune()` method in YOLOv8 provides an easy-to-use interface for hyperparameter tuning with Ray Tune. It accepts several arguments that allow you to customize the tuning process. Below is a detailed explanation of each parameter: The `tune()` method in YOLOv8 provides an easy-to-use interface for hyperparameter tuning with Ray Tune. It accepts several arguments that allow you to customize the tuning process. Below is a detailed explanation of each parameter:
| Parameter | Type | Description | Default Value | | Parameter | Type | Description | Default Value |
|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------| |-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `data` | str | The dataset configuration file (in YAML format) to run the tuner on. This file should specify the training and validation data paths, as well as other dataset-specific settings. | | | `data` | str | The dataset configuration file (in YAML format) to run the tuner on. This file should specify the training and validation data paths, as well as other dataset-specific settings. | |
| `space` | dict, optional | A dictionary defining the hyperparameter search space for Ray Tune. Each key corresponds to a hyperparameter name, and the value specifies the range of values to explore during tuning. If not provided, YOLOv8 uses a default search space with various hyperparameters. | | | `space` | dict, optional | A dictionary defining the hyperparameter search space for Ray Tune. Each key corresponds to a hyperparameter name, and the value specifies the range of values to explore during tuning. If not provided, YOLOv8 uses a default search space with various hyperparameters. | |
| `grace_period` | int, optional | The grace period in epochs for the [ASHA scheduler](https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#asha-tune-schedulers-asha) in Ray Tune. The scheduler will not terminate any trial before this number of epochs, allowing the model to have some minimum training before making a decision on early stopping. | 10 | | `grace_period` | int, optional | The grace period in epochs for the [ASHA scheduler]https://docs.ray.io/en/latest/tune/api/schedulers.html) in Ray Tune. The scheduler will not terminate any trial before this number of epochs, allowing the model to have some minimum training before making a decision on early stopping. | 10 |
| `gpu_per_trial` | int, optional | The number of GPUs to allocate per trial during tuning. This helps manage GPU usage, particularly in multi-GPU environments. If not provided, the tuner will use all available GPUs. | None | | `gpu_per_trial` | int, optional | The number of GPUs to allocate per trial during tuning. This helps manage GPU usage, particularly in multi-GPU environments. If not provided, the tuner will use all available GPUs. | None |
| `max_samples` | int, optional | The maximum number of trials to run during tuning. This parameter helps control the total number of hyperparameter combinations tested, ensuring the tuning process does not run indefinitely. | 10 | | `max_samples` | int, optional | The maximum number of trials to run during tuning. This parameter helps control the total number of hyperparameter combinations tested, ensuring the tuning process does not run indefinitely. | 10 |
| `train_args` | dict, optional | A dictionary of additional arguments to pass to the `train()` method during tuning. These arguments can include settings like the number of training epochs, batch size, and other training-specific configurations. | {} | | `train_args` | dict, optional | A dictionary of additional arguments to pass to the `train()` method during tuning. These arguments can include settings like the number of training epochs, batch size, and other training-specific configurations. | {} |
By customizing these parameters, you can fine-tune the hyperparameter optimization process to suit your specific needs and available computational resources. By customizing these parameters, you can fine-tune the hyperparameter optimization process to suit your specific needs and available computational resources.

@ -163,6 +163,7 @@ nav:
- models/index.md - models/index.md
- YOLOv3: models/yolov3.md - YOLOv3: models/yolov3.md
- YOLOv5: models/yolov5.md - YOLOv5: models/yolov5.md
- YOLOv6: models/yolov6.md
- YOLOv8: models/yolov8.md - YOLOv8: models/yolov8.md
- SAM (Segment Anything Model): models/sam.md - SAM (Segment Anything Model): models/sam.md
- RT-DETR (Realtime Detection Transformer): models/rtdetr.md - RT-DETR (Realtime Detection Transformer): models/rtdetr.md

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.107' __version__ = '8.0.108'
from ultralytics.hub import start from ultralytics.hub import start
from ultralytics.vit.rtdetr import RTDETR from ultralytics.vit.rtdetr import RTDETR

@ -0,0 +1,51 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
act: nn.ReLU()
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [ 0.33, 0.25, 1024 ]
s: [ 0.33, 0.50, 1024 ]
m: [ 0.67, 0.75, 768 ]
l: [ 1.00, 1.00, 512 ]
x: [ 1.00, 1.25, 512 ]
# YOLOv6-3.0s backbone
backbone:
# [from, repeats, module, args]
- [ -1, 1, Conv, [ 64, 3, 2 ] ] # 0-P1/2
- [ -1, 1, Conv, [ 128, 3, 2 ] ] # 1-P2/4
- [ -1, 6, Conv, [ 128, 3, 1 ] ]
- [ -1, 1, Conv, [ 256, 3, 2 ] ] # 3-P3/8
- [ -1, 12, Conv, [ 256, 3, 1 ] ]
- [ -1, 1, Conv, [ 512, 3, 2 ] ] # 5-P4/16
- [ -1, 18, Conv, [ 512, 3, 1 ] ]
- [ -1, 1, Conv, [ 1024, 3, 2 ] ] # 7-P5/32
- [ -1, 9, Conv, [ 1024, 3, 1 ] ]
- [ -1, 1, SPPF, [ 1024, 5 ] ] # 9
# YOLOv6-3.0s head
head:
- [ -1, 1, nn.ConvTranspose2d, [ 256, 2, 2, 0 ] ]
- [ [ -1, 6 ], 1, Concat, [ 1 ] ] # cat backbone P4
- [ -1, 1, Conv, [ 256, 3, 1 ] ]
- [ -1, 9, Conv, [ 256, 3, 1 ] ] # 13
- [ -1, 1, nn.ConvTranspose2d, [ 128, 2, 2, 0 ] ]
- [ [ -1, 4 ], 1, Concat, [ 1 ] ] # cat backbone P3
- [ -1, 1, Conv, [ 128, 3, 1 ] ]
- [ -1, 9, Conv, [ 128, 3, 1 ] ] # 17
- [ -1, 1, Conv, [ 128, 3, 2 ] ]
- [ [ -1, 12 ], 1, Concat, [ 1 ] ] # cat head P4
- [ -1, 1, Conv, [ 256, 3, 1 ] ]
- [ -1, 9, Conv, [ 256, 3, 1 ] ] # 21
- [ -1, 1, Conv, [ 256, 3, 2 ] ]
- [ [ -1, 9 ], 1, Concat, [ 1 ] ] # cat head P5
- [ -1, 1, Conv, [ 512, 3, 1 ] ]
- [ -1, 9, Conv, [ 512, 3, 1 ] ] # 25
- [ [ 17, 21, 25 ], 1, Detect, [ nc ] ] # Detect(P3, P4, P5)

@ -2,6 +2,7 @@
from ultralytics.yolo.cfg import get_cfg from ultralytics.yolo.cfg import get_cfg
from ...yolo.utils.torch_utils import model_info
from .build import build_sam from .build import build_sam
from .predict import Predictor from .predict import Predictor
@ -33,3 +34,13 @@ class SAM:
def val(self, **kwargs): def val(self, **kwargs):
"""Run validation given dataset.""" """Run validation given dataset."""
raise NotImplementedError("SAM models don't support validation") raise NotImplementedError("SAM models don't support validation")
def info(self, detailed=False, verbose=True):
"""
Logs model info.
Args:
detailed (bool): Show detailed information about model.
verbose (bool): Controls verbosity.
"""
return model_info(self.model, detailed=detailed, verbose=verbose)

@ -111,10 +111,13 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
check_cfg_mismatch(cfg, overrides) check_cfg_mismatch(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides) cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/names # Special handling for numeric project/name
for k in 'project', 'name': for k in 'project', 'name':
if k in cfg and isinstance(cfg[k], (int, float)): if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k]) cfg[k] = str(cfg[k])
if cfg.get('name') == 'model': # assign model to 'name' arg
cfg['name'] = cfg.get('model', '').split('.')[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
# Type and Value checks # Type and Value checks
for k, v in cfg.items(): for k, v in cfg.items():

@ -116,7 +116,7 @@ def check_source(source):
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')) is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower().startswith('screen') screenshot = source.lower() == 'screen'
if is_url and is_file: if is_url and is_file:
source = check_file(source) # download source = check_file(source) # download
elif isinstance(source, tuple(LOADERS)): elif isinstance(source, tuple(LOADERS)):

@ -331,12 +331,12 @@ class YOLO:
overrides = self.overrides.copy() overrides = self.overrides.copy()
overrides.update(kwargs) overrides.update(kwargs)
overrides['mode'] = 'export' overrides['mode'] = 'export'
if overrides.get('imgsz') is None:
overrides['imgsz'] = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if overrides.get('batch') is None:
overrides['batch'] = 1 # default to 1 if not modified
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train(self, **kwargs): def train(self, **kwargs):

@ -684,12 +684,17 @@ def check_amp(model):
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3)) im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3))
prefix = colorstr('AMP: ') prefix = colorstr('AMP: ')
LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...') LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...')
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
try: try:
from ultralytics import YOLO from ultralytics import YOLO
assert amp_allclose(YOLO('yolov8n.pt'), im) assert amp_allclose(YOLO('yolov8n.pt'), im)
LOGGER.info(f'{prefix}checks passed ✅') LOGGER.info(f'{prefix}checks passed ✅')
except ConnectionError: except ConnectionError:
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. Setting 'amp=True'.") LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}')
except (AttributeError, ModuleNotFoundError):
LOGGER.warning(
f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}'
)
except AssertionError: except AssertionError:
LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to ' LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to '
f'NaN losses or zero-mAP results, so AMP will be disabled during training.') f'NaN losses or zero-mAP results, so AMP will be disabled during training.')

@ -372,12 +372,15 @@ def is_online() -> bool:
""" """
import socket import socket
for server in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS: for host in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS:
try: try:
socket.create_connection((server, 53), timeout=2) # connect to (server, port=53) test_connection = socket.create_connection(address=(host, 53), timeout=2)
return True
except (socket.timeout, socket.gaierror, OSError): except (socket.timeout, socket.gaierror, OSError):
continue continue
else:
# If the connection was successful, close it to avoid a ResourceWarning
test_connection.close()
return True
return False return False

@ -3,7 +3,7 @@
Benchmark a YOLO model formats for speed and accuracy Benchmark a YOLO model formats for speed and accuracy
Usage: Usage:
from ultralytics.yolo.utils.benchmarks import ProfileModels, run_benchmarks from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']) ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])
run_benchmarks(model='yolov8n.pt', imgsz=160) run_benchmarks(model='yolov8n.pt', imgsz=160)
@ -163,7 +163,7 @@ class ProfileModels:
profile(): Profiles the models and prints the result. profile(): Profiles the models and prints the result.
""" """
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=3, imgsz=640, trt=True): def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True):
self.paths = paths self.paths = paths
self.num_timed_runs = num_timed_runs self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs self.num_warmup_runs = num_warmup_runs
@ -181,22 +181,22 @@ class ProfileModels:
table_rows = [] table_rows = []
device = 0 if torch.cuda.is_available() else 'cpu' device = 0 if torch.cuda.is_available() else 'cpu'
for file in files: for file in files:
engine_file = '' engine_file = file.with_suffix('.engine')
if file.suffix in ('.pt', '.yaml'): if file.suffix in ('.pt', '.yaml'):
model = YOLO(str(file)) model = YOLO(str(file))
num_params, num_flops = model.info() model_info = model.info()
if self.trt and device == 0: if self.trt and device == 0 and not engine_file.is_file():
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=device) engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=device)
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=device) onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=device)
elif file.suffix == '.onnx': elif file.suffix == '.onnx':
num_params, num_flops = self.get_onnx_model_info(file) model_info = self.get_onnx_model_info(file)
onnx_file = file onnx_file = file
else: else:
continue continue
t_engine = self.profile_tensorrt_model(str(engine_file)) t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file)) t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, num_params, num_flops)) table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows) self.print_table(table_rows)
@ -216,10 +216,21 @@ class ProfileModels:
return [Path(file) for file in sorted(files)] return [Path(file) for file in sorted(files)]
def get_onnx_model_info(self, onnx_file: str): def get_onnx_model_info(self, onnx_file: str):
return 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
return 0.0, 0.0, 0.0, 0.0
def iterative_sigma_clipping(self, data, sigma=2, max_iters=5):
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
if len(clipped_data) == len(data):
break
data = clipped_data
return data
def profile_tensorrt_model(self, engine_file: str): def profile_tensorrt_model(self, engine_file: str):
if not Path(engine_file).is_file(): if not self.trt or not Path(engine_file).is_file():
return 0.0, 0.0 return 0.0, 0.0
# Warmup runs # Warmup runs
@ -230,10 +241,11 @@ class ProfileModels:
# Timed runs # Timed runs
run_times = [] run_times = []
for _ in tqdm(range(self.num_timed_runs), desc=engine_file): for _ in tqdm(range(self.num_timed_runs * 30), desc=engine_file):
results = model(input_data, verbose=False) results = model(input_data, verbose=False)
run_times.append(results[0].speed['inference']) # Convert to milliseconds run_times.append(results[0].speed['inference']) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
return np.mean(run_times), np.std(run_times) return np.mean(run_times), np.std(run_times)
def profile_onnx_model(self, onnx_file: str): def profile_onnx_model(self, onnx_file: str):
@ -246,7 +258,23 @@ class ProfileModels:
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider']) sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
input_tensor = sess.get_inputs()[0] input_tensor = sess.get_inputs()[0]
input_data = np.random.rand(*input_tensor.shape).astype(np.float16 if torch.cuda.is_available() else np.float32) input_type = input_tensor.type
# Mapping ONNX datatype to numpy datatype
if 'float16' in input_type:
input_dtype = np.float16
elif 'float' in input_type:
input_dtype = np.float32
elif 'double' in input_type:
input_dtype = np.float64
elif 'int64' in input_type:
input_dtype = np.int64
elif 'int32' in input_type:
input_dtype = np.int32
else:
raise ValueError(f'Unsupported ONNX datatype {input_type}')
input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
input_name = input_tensor.name input_name = input_tensor.name
output_name = sess.get_outputs()[0].name output_name = sess.get_outputs()[0].name
@ -261,17 +289,19 @@ class ProfileModels:
sess.run([output_name], {input_name: input_data}) sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
return np.mean(run_times), np.std(run_times) return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, num_params, num_flops): def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
return f'| {model_name} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {num_params / 1e6:.1f} | {num_flops:.1f} |' layers, params, gradients, flops = model_info
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
def print_table(self, table_rows): def print_table(self, table_rows):
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU' gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |' header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |'
separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|' separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|'
print(header) print(f'\n\n{header}')
print(separator) print(separator)
for row in table_rows: for row in table_rows:
print(row) print(row)

@ -104,7 +104,8 @@ def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
""" """
if ratio_pad is None: # calculate from img0_shape if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
(img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1) # wh padding
else: else:
gain = ratio_pad[0][0] gain = ratio_pad[0][0]
pad = ratio_pad[1] pad = ratio_pad[1]

@ -162,8 +162,9 @@ def model_info(model, detailed=False, verbose=True, imgsz=640):
"""Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].""" """Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]."""
if not verbose: if not verbose:
return return
n_p = get_num_params(model) n_p = get_num_params(model) # number of parameters
n_g = get_num_gradients(model) # number gradients n_g = get_num_gradients(model) # number of gradients
n_l = len(list(model.modules())) # number of layers
if detailed: if detailed:
LOGGER.info( LOGGER.info(
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
@ -173,11 +174,12 @@ def model_info(model, detailed=False, verbose=True, imgsz=640):
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)) (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype))
flops = get_flops(model, imgsz) flops = get_flops(model, imgsz)
fused = ' (fused)' if model.is_fused() else '' fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else ''
fs = f', {flops:.1f} GFLOPs' if flops else '' fs = f', {flops:.1f} GFLOPs' if flops else ''
m = Path(getattr(model, 'yaml_file', '') or model.yaml.get('yaml_file', '')).stem.replace('yolo', 'YOLO') or 'Model' yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '')
LOGGER.info(f'{m} summary{fused}: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}') model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model'
return n_p, flops LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}')
return n_l, n_p, n_g, flops
def get_num_params(model): def get_num_params(model):
@ -199,8 +201,7 @@ def get_flops(model, imgsz=640):
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0 # stride GFLOPs
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs return flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
return flops
except Exception: except Exception:
return 0 return 0

Loading…
Cancel
Save