`ultralytics 8.0.111` refactored `model.loss()` method (#2911)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 305cde69d0
commit fd94d312da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -27,6 +27,11 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
:::ultralytics.nn.tasks.ClassificationModel :::ultralytics.nn.tasks.ClassificationModel
<br><br> <br><br>
# RTDETRDetectionModel
---
:::ultralytics.nn.tasks.RTDETRDetectionModel
<br><br>
# Ensemble # Ensemble
--- ---
:::ultralytics.nn.tasks.Ensemble :::ultralytics.nn.tasks.Ensemble

@ -36,3 +36,8 @@ description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and te
--- ---
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list :::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
<br><br> <br><br>
# get_best_youtube_url
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
<br><br>

@ -16,3 +16,23 @@ description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO fo
--- ---
:::ultralytics.yolo.utils.loss.KeypointLoss :::ultralytics.yolo.utils.loss.KeypointLoss
<br><br> <br><br>
# v8DetectionLoss
---
:::ultralytics.yolo.utils.loss.v8DetectionLoss
<br><br>
# v8SegmentationLoss
---
:::ultralytics.yolo.utils.loss.v8SegmentationLoss
<br><br>
# v8PoseLoss
---
:::ultralytics.yolo.utils.loss.v8PoseLoss
<br><br>
# v8ClassificationLoss
---
:::ultralytics.yolo.utils.loss.v8ClassificationLoss
<br><br>

@ -7,11 +7,6 @@ description: Train and optimize custom object detection models with Ultralytics
:::ultralytics.yolo.v8.detect.train.DetectionTrainer :::ultralytics.yolo.v8.detect.train.DetectionTrainer
<br><br> <br><br>
# Loss
---
:::ultralytics.yolo.v8.detect.train.Loss
<br><br>
# train # train
--- ---
:::ultralytics.yolo.v8.detect.train.train :::ultralytics.yolo.v8.detect.train.train

@ -7,11 +7,6 @@ description: Boost posture detection using PoseTrainer and train models using tr
:::ultralytics.yolo.v8.pose.train.PoseTrainer :::ultralytics.yolo.v8.pose.train.PoseTrainer
<br><br> <br><br>
# PoseLoss
---
:::ultralytics.yolo.v8.pose.train.PoseLoss
<br><br>
# train # train
--- ---
:::ultralytics.yolo.v8.pose.train.train :::ultralytics.yolo.v8.pose.train.train

@ -7,11 +7,6 @@ description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 fo
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer :::ultralytics.yolo.v8.segment.train.SegmentationTrainer
<br><br> <br><br>
# SegLoss
---
:::ultralytics.yolo.v8.segment.train.SegLoss
<br><br>
# train # train
--- ---
:::ultralytics.yolo.v8.segment.train.train :::ultralytics.yolo.v8.segment.train.train

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license # Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.110' __version__ = '8.0.111'
from ultralytics.hub import start from ultralytics.hub import start
from ultralytics.vit.rtdetr import RTDETR from ultralytics.vit.rtdetr import RTDETR

@ -21,10 +21,9 @@ from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d, from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer) MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
__all__ = [ __all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
'Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect', 'Segment', 'Pose', 'Classify', 'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI', 'DeformableTransformerDecoder', 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP']

@ -10,9 +10,8 @@ import torch.nn.functional as F
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
from .transformer import TransformerBlock from .transformer import TransformerBlock
__all__ = [ __all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3']
class DFL(nn.Module): class DFL(nn.Module):

@ -9,9 +9,8 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
__all__ = [ __all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
'Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'ChannelAttention', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
'SpatialAttention', 'CBAM', 'Concat', 'RepConv']
def autopad(k, p=None, d=1): # kernel, padding, dilation def autopad(k, p=None, d=1): # kernel, padding, dilation

@ -16,7 +16,7 @@ from .conv import Conv
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
from .utils import bias_init_with_prob, linear_init_ from .utils import bias_init_with_prob, linear_init_
__all__ = ['Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'] __all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
class Detect(nn.Module): class Detect(nn.Module):

@ -13,9 +13,8 @@ from torch.nn.init import constant_, xavier_uniform_
from .conv import Conv from .conv import Conv
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
__all__ = [ __all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
'TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI', 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP']
class TransformerEncoderLayer(nn.Module): class TransformerEncoderLayer(nn.Module):

@ -12,7 +12,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn.init import uniform_ from torch.nn.init import uniform_
__all__ = ['multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'] __all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
def _get_clones(module, n): def _get_clones(module, n):

@ -9,7 +9,7 @@ from ultralytics.yolo.data.augment import Compose, Format, LetterBox
from ultralytics.yolo.utils import colorstr, ops from ultralytics.yolo.utils import colorstr, ops
from ultralytics.yolo.v8.detect import DetectionValidator from ultralytics.yolo.v8.detect import DetectionValidator
__all__ = ['RTDETRValidator'] __all__ = 'RTDETRValidator', # tuple or list
# TODO: Temporarily, RT-DETR does not need padding. # TODO: Temporarily, RT-DETR does not need padding.

Loading…
Cancel
Save