add resuming (#63)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Laughing
2022-12-05 20:56:41 -06:00
committed by GitHub
parent de3e6ca54d
commit fbeeb5d1e1
7 changed files with 86 additions and 30 deletions

View File

@ -4,6 +4,7 @@ import torch
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel
@ -12,13 +13,13 @@ class ClassificationTrainer(BaseTrainer):
def set_model_attributes(self):
self.model.names = self.data["names"]
def load_model(self, model_cfg, weights, data):
def load_model(self, model_cfg, weights):
# TODO: why treat clf models as unique. We should have clf yamls?
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
model = weights
else:
model = ClassificationModel(model_cfg, weights, data["nc"])
ClassificationModel.reshape_outputs(model, data["nc"])
model = ClassificationModel(model_cfg, weights, self.data["nc"])
ClassificationModel.reshape_outputs(model, self.data["nc"])
for m in model.modules():
if not weights and hasattr(m, 'reset_parameters'):
m.reset_parameters()
@ -28,6 +29,9 @@ class ClassificationTrainer(BaseTrainer):
p.requires_grad = True # for training
return model
def load_ckpt(self, ckpt):
return get_model(ckpt)
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.img_size,
@ -46,6 +50,12 @@ class ClassificationTrainer(BaseTrainer):
loss = torch.nn.functional.cross_entropy(preds, batch["cls"])
return loss, loss
def check_resume(self):
pass
def resume_training(self, ckpt):
pass
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):

View File

@ -15,10 +15,10 @@ from .val import DetectionValidator
# BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer):
def load_model(self, model_cfg, weights, data):
def load_model(self, model_cfg, weights):
model = DetectionModel(model_cfg or weights["model"].yaml,
ch=3,
nc=data["nc"],
nc=self.data["nc"],
anchors=self.args.get("anchors"))
if weights:
model.load(weights)

View File

@ -26,10 +26,10 @@ class SegmentationTrainer(BaseTrainer):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def load_model(self, model_cfg, weights, data):
def load_model(self, model_cfg, weights):
model = SegmentationModel(model_cfg or weights["model"].yaml,
ch=3,
nc=data["nc"],
nc=self.data["nc"],
anchors=self.args.get("anchors"))
if weights:
model.load(weights)

View File

@ -242,7 +242,7 @@ class SegmentationValidator(BaseValidator):
cls,
bboxes,
masks,
paths,
paths=paths,
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)