|
|
@ -1,17 +1,20 @@
|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
|
|
|
|
import shutil
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
from copy import copy
|
|
|
|
from pathlib import Path
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
from PIL import Image
|
|
|
|
from torchvision.transforms import ToTensor
|
|
|
|
from torchvision.transforms import ToTensor
|
|
|
|
|
|
|
|
|
|
|
|
from ultralytics import RTDETR, YOLO
|
|
|
|
from ultralytics import RTDETR, YOLO
|
|
|
|
from ultralytics.data.build import load_inference_source
|
|
|
|
from ultralytics.data.build import load_inference_source
|
|
|
|
from ultralytics.utils import LINUX, MACOS, ONLINE, ROOT, SETTINGS
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LINUX, ONLINE, ROOT, SETTINGS
|
|
|
|
|
|
|
|
from ultralytics.utils.downloads import download
|
|
|
|
from ultralytics.utils.torch_utils import TORCH_1_9
|
|
|
|
from ultralytics.utils.torch_utils import TORCH_1_9
|
|
|
|
|
|
|
|
|
|
|
|
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
|
|
|
|
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
|
|
|
@ -19,13 +22,6 @@ MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path
|
|
|
|
CFG = 'yolov8n.yaml'
|
|
|
|
CFG = 'yolov8n.yaml'
|
|
|
|
SOURCE = ROOT / 'assets/bus.jpg'
|
|
|
|
SOURCE = ROOT / 'assets/bus.jpg'
|
|
|
|
TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files
|
|
|
|
TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files
|
|
|
|
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg')
|
|
|
|
|
|
|
|
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Convert SOURCE to greyscale and 4-ch
|
|
|
|
|
|
|
|
im = Image.open(SOURCE)
|
|
|
|
|
|
|
|
im.convert('L').save(SOURCE_GREYSCALE) # greyscale
|
|
|
|
|
|
|
|
im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_forward():
|
|
|
|
def test_model_forward():
|
|
|
@ -84,16 +80,32 @@ def test_predict_img():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_predict_grey_and_4ch():
|
|
|
|
def test_predict_grey_and_4ch():
|
|
|
|
|
|
|
|
# Convert SOURCE to greyscale and 4-ch
|
|
|
|
|
|
|
|
im = Image.open(SOURCE)
|
|
|
|
|
|
|
|
source_greyscale = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg')
|
|
|
|
|
|
|
|
source_rgba = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png')
|
|
|
|
|
|
|
|
im.convert('L').save(source_greyscale) # greyscale
|
|
|
|
|
|
|
|
im.convert('RGBA').save(source_rgba) # 4-ch PNG with alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
for f in SOURCE_RGBA, SOURCE_GREYSCALE:
|
|
|
|
for f in source_rgba, source_greyscale:
|
|
|
|
for source in Image.open(f), cv2.imread(str(f)), f:
|
|
|
|
for source in Image.open(f), cv2.imread(str(f)), f:
|
|
|
|
model(source, save=True, verbose=True, imgsz=32)
|
|
|
|
model(source, save=True, verbose=True, imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Cleanup
|
|
|
|
|
|
|
|
source_greyscale.unlink()
|
|
|
|
|
|
|
|
source_rgba.unlink()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
|
|
|
|
def test_track_stream():
|
|
|
|
def test_track_stream():
|
|
|
|
# Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker
|
|
|
|
# Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker
|
|
|
|
|
|
|
|
# imgsz=160 required for tracking for higher confidence and better matches
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model.track('https://youtu.be/G17sBkb38XQ', imgsz=96, tracker='bytetrack.yaml')
|
|
|
|
model.predict('https://youtu.be/G17sBkb38XQ', imgsz=96)
|
|
|
|
|
|
|
|
model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='bytetrack.yaml')
|
|
|
|
|
|
|
|
model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='botsort.yaml')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_val():
|
|
|
|
def test_val():
|
|
|
@ -101,13 +113,6 @@ def test_val():
|
|
|
|
model.val(data='coco8.yaml', imgsz=32)
|
|
|
|
model.val(data='coco8.yaml', imgsz=32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_amp():
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
from ultralytics.utils.checks import check_amp
|
|
|
|
|
|
|
|
model = YOLO(MODEL).model.cuda()
|
|
|
|
|
|
|
|
assert check_amp(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_train_scratch():
|
|
|
|
def test_train_scratch():
|
|
|
|
model = YOLO(CFG)
|
|
|
|
model = YOLO(CFG)
|
|
|
|
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk', batch=-1) # test disk caching with AutoBatch
|
|
|
|
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk', batch=-1) # test disk caching with AutoBatch
|
|
|
@ -133,7 +138,6 @@ def test_export_onnx():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_export_openvino():
|
|
|
|
def test_export_openvino():
|
|
|
|
if not MACOS:
|
|
|
|
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
model = YOLO(MODEL)
|
|
|
|
f = model.export(format='openvino')
|
|
|
|
f = model.export(format='openvino')
|
|
|
|
YOLO(f)(SOURCE) # exported model inference
|
|
|
|
YOLO(f)(SOURCE) # exported model inference
|
|
|
@ -173,7 +177,7 @@ def test_all_model_yamls():
|
|
|
|
for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'):
|
|
|
|
for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'):
|
|
|
|
if 'rtdetr' in m.name:
|
|
|
|
if 'rtdetr' in m.name:
|
|
|
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
|
|
|
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
|
|
|
|
RTDETR(m.name)
|
|
|
|
RTDETR(m.name)(SOURCE, imgsz=640)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
YOLO(m.name)
|
|
|
|
YOLO(m.name)
|
|
|
|
|
|
|
|
|
|
|
@ -225,17 +229,14 @@ def test_results():
|
|
|
|
print(getattr(r, k))
|
|
|
|
print(getattr(r, k))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
|
|
|
|
def test_data_utils():
|
|
|
|
def test_data_utils():
|
|
|
|
# Test functions in ultralytics/data/utils.py
|
|
|
|
# Test functions in ultralytics/data/utils.py
|
|
|
|
from ultralytics.data.utils import HUBDatasetStats, autosplit, zip_directory
|
|
|
|
from ultralytics.data.utils import HUBDatasetStats, autosplit, zip_directory
|
|
|
|
from ultralytics.utils.downloads import download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# from ultralytics.utils.files import WorkingDirectory
|
|
|
|
# from ultralytics.utils.files import WorkingDirectory
|
|
|
|
# with WorkingDirectory(ROOT.parent / 'tests'):
|
|
|
|
# with WorkingDirectory(ROOT.parent / 'tests'):
|
|
|
|
|
|
|
|
|
|
|
|
shutil.rmtree(TMP, ignore_errors=True)
|
|
|
|
|
|
|
|
TMP.mkdir(parents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
download('https://github.com/ultralytics/hub/raw/master/example_datasets/coco8.zip', unzip=False)
|
|
|
|
download('https://github.com/ultralytics/hub/raw/master/example_datasets/coco8.zip', unzip=False)
|
|
|
|
shutil.move('coco8.zip', TMP)
|
|
|
|
shutil.move('coco8.zip', TMP)
|
|
|
|
stats = HUBDatasetStats(TMP / 'coco8.zip', task='detect')
|
|
|
|
stats = HUBDatasetStats(TMP / 'coco8.zip', task='detect')
|
|
|
@ -244,4 +245,25 @@ def test_data_utils():
|
|
|
|
|
|
|
|
|
|
|
|
autosplit(TMP / 'coco8')
|
|
|
|
autosplit(TMP / 'coco8')
|
|
|
|
zip_directory(TMP / 'coco8/images/val') # zip
|
|
|
|
zip_directory(TMP / 'coco8/images/val') # zip
|
|
|
|
shutil.rmtree(TMP)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
|
|
|
|
|
|
|
|
def test_data_converter():
|
|
|
|
|
|
|
|
# Test dataset converters
|
|
|
|
|
|
|
|
from ultralytics.data.converter import convert_coco
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file = 'instances_val2017.json'
|
|
|
|
|
|
|
|
download(f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}')
|
|
|
|
|
|
|
|
shutil.move(file, TMP)
|
|
|
|
|
|
|
|
convert_coco(labels_dir=TMP, use_segments=True, use_keypoints=False, cls91to80=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_events():
|
|
|
|
|
|
|
|
# Test event sending
|
|
|
|
|
|
|
|
from ultralytics.hub.utils import Events
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
events = Events()
|
|
|
|
|
|
|
|
events.enabled = True
|
|
|
|
|
|
|
|
cfg = copy(DEFAULT_CFG) # does not require deepcopy
|
|
|
|
|
|
|
|
cfg.mode = 'test'
|
|
|
|
|
|
|
|
events(cfg)
|
|
|
|