ultralytics 8.0.53
DDP AMP and Edge TPU fixes (#1362)
Co-authored-by: Richard Aljaste <richardaljasteabramson@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Vuong Kha Sieu <75152429+hotfur@users.noreply.github.com>
This commit is contained in:
@ -16,7 +16,7 @@ of that class are located or what their exact shape is.
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
||||
see the [Configuration](../cfg.md) page.
|
||||
see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
@ -118,20 +118,21 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-cls export formats include:
|
||||
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-cls.onnx`.
|
||||
|
||||
| Format | `format=` | Model | Metadata |
|
||||
|--------------------------------------------------------------------|---------------|-------------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ |
|
||||
| Format | `format` Argument | Model | Metadata |
|
||||
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ |
|
||||
|
@ -16,7 +16,7 @@ scene, but don't need to know exactly where the object is or its exact shape.
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||
the [Configuration](../cfg.md) page.
|
||||
the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
@ -120,19 +120,20 @@ Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8 export formats include:
|
||||
Available YOLOv8 export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n.onnx`.
|
||||
|
||||
| Format | `format=` | Model | Metadata |
|
||||
|--------------------------------------------------------------------|---------------|---------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
|
||||
| Format | `format` Argument | Model | Metadata |
|
||||
|--------------------------------------------------------------------|-------------------|---------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
|
46
docs/tasks/index.md
Normal file
46
docs/tasks/index.md
Normal file
@ -0,0 +1,46 @@
|
||||
# Ultralytics YOLOv8 Tasks
|
||||
|
||||
YOLOv8 is an AI framework that supports multiple computer vision **tasks**. The framework can be used to
|
||||
perform [detection](detect.md), [segmentation](segment.md), [classification](classify.md),
|
||||
and [keypoints](keypoints.md) detection. Each of these tasks has a different objective and use case.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
## [Detection](detect.md)
|
||||
|
||||
Detection is the primary task supported by YOLOv8. It involves detecting objects in an image or video frame and drawing
|
||||
bounding boxes around them. The detected objects are classified into different categories based on their features.
|
||||
YOLOv8 can detect multiple objects in a single image or video frame with high accuracy and speed.
|
||||
|
||||
[Detection Examples](detect.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Segmentation](segment.md)
|
||||
|
||||
Segmentation is a task that involves segmenting an image into different regions based on the content of the image. Each
|
||||
region is assigned a label based on its content. This task is useful in applications such as image segmentation and
|
||||
medical imaging. YOLOv8 uses a variant of the U-Net architecture to perform segmentation.
|
||||
|
||||
[Segmentation Examples](segment.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Classification](classify.md)
|
||||
|
||||
Classification is a task that involves classifying an image into different categories. YOLOv8 can be used to classify
|
||||
images based on their content. It uses a variant of the EfficientNet architecture to perform classification.
|
||||
|
||||
[Classification Examples](classify.md){ .md-button .md-button--primary}
|
||||
|
||||
<!--
|
||||
## [Keypoints](keypoints.md)
|
||||
|
||||
Keypoints detection is a task that involves detecting specific points in an image or video frame. These points are
|
||||
referred to as keypoints and are used to track movement or pose estimation. YOLOv8 can detect keypoints in an image or
|
||||
video frame with high accuracy and speed.
|
||||
|
||||
[Keypoints Examples](keypoints.md){ .md-button .md-button--primary}
|
||||
-->
|
||||
|
||||
## Conclusion
|
||||
|
||||
YOLOv8 supports multiple tasks, including detection, segmentation, classification, and keypoints detection. Each of
|
||||
these tasks has different objectives and use cases. By understanding the differences between these tasks, you can choose
|
||||
the appropriate task for your computer vision application.
|
141
docs/tasks/keypoints.md
Normal file
141
docs/tasks/keypoints.md
Normal file
@ -0,0 +1,141 @@
|
||||
Key Point Estimation is a task that involves identifying the location of specific points in an image, usually referred
|
||||
to as keypoints. The keypoints can represent various parts of the object such as joints, landmarks, or other distinctive
|
||||
features. The locations of the keypoints are usually represented as a set of 2D `[x, y]` or 3D `[x, y, visible]`
|
||||
coordinates.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of a keypoint detector is a set of points that represent the keypoints on the object in the image, usually
|
||||
along with the confidence scores for each point. Keypoint estimation is a good choice when you need to identify specific
|
||||
parts of an object in a scene, and their location in relation to each other.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 _keypoints_ models use the `-kpts` suffix, i.e. `yolov8n-kpts.pt`. These models are trained on the COCO dataset and are suitable for a variety of keypoint estimation tasks.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8){ .md-button .md-button--primary}
|
||||
|
||||
## Train TODO
|
||||
|
||||
Train an OpenPose model on a custom dataset of keypoints using the OpenPose framework. For more information on how to
|
||||
train an OpenPose model on a custom dataset, see the OpenPose Training page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.yaml") # build a new model from scratch
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
model.train(data="coco128.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Val TODO
|
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
||||
training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.box.map # map50-95
|
||||
metrics.box.map50 # map50
|
||||
metrics.box.map75 # map75
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt # val official model
|
||||
yolo detect val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict TODO
|
||||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||
```
|
||||
|
||||
Read more details of `predict` in our [Predict](https://docs.ultralytics.com/predict/) page.
|
||||
|
||||
## Export TODO
|
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format="onnx")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-pose export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-pose.onnx`.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata |
|
||||
|--------------------------------------------------------------------|-------------------|---------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |
|
@ -16,7 +16,7 @@ segmentation is useful when you need to know not only where objects are in an im
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
|
||||
arguments see the [Configuration](../cfg.md) page.
|
||||
arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
@ -124,21 +124,22 @@ Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-seg export formats include:
|
||||
Available YOLOv8-seg export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-seg.onnx`.
|
||||
|
||||
| Format | `format=` | Model | Metadata |
|
||||
|--------------------------------------------------------------------|---------------|-------------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ |
|
||||
| Format | `format` Argument | Model | Metadata |
|
||||
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ |
|
||||
|
||||
|
@ -1,95 +0,0 @@
|
||||
Object tracking is a task that involves identifying the location and class of objects, then assigning a unique ID to
|
||||
that detection in video streams.
|
||||
|
||||
The output of tracker is the same as detection with an added object ID.
|
||||
|
||||
## Available Trackers
|
||||
|
||||
The following tracking algorithms have been implemented and can be enabled by passing `tracker=tracker_type.yaml`
|
||||
|
||||
* [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - `botsort.yaml`
|
||||
* [ByteTrack](https://github.com/ifzhang/ByteTrack) - `bytetrack.yaml`
|
||||
|
||||
The default tracker is BoT-SORT.
|
||||
|
||||
## Tracking
|
||||
|
||||
Use a trained YOLOv8n/YOLOv8n-seg model to run tracker on video streams.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load an official detection model
|
||||
model = YOLO("yolov8n-seg.pt") # load an official segmentation model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Track with the model
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" # official detection model
|
||||
yolo track model=yolov8n-seg.pt source=... # official segmentation model
|
||||
yolo track model=path/to/best.pt source=... # custom model
|
||||
yolo track model=path/to/best.pt tracker="bytetrack.yaml" # bytetrack tracker
|
||||
|
||||
```
|
||||
|
||||
As in the above usage, we support both the detection and segmentation models for tracking and the only thing you need to
|
||||
do is loading the corresponding (detection or segmentation) model.
|
||||
|
||||
## Configuration
|
||||
|
||||
### Tracking
|
||||
|
||||
Tracking shares the configuration with predict, i.e `conf`, `iou`, `show`. More configurations please refer
|
||||
to [predict page](https://docs.ultralytics.com/cfg/#prediction).
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", conf=0.3, iou=0.5, show=True)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" conf=0.3, iou=0.5 show
|
||||
|
||||
```
|
||||
|
||||
### Tracker
|
||||
|
||||
We also support using a modified tracker config file, just copy a config file i.e `custom_tracker.yaml`
|
||||
from [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg) and modify
|
||||
any configurations(expect the `tracker_type`) you need to.
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", tracker='custom_tracker.yaml')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" tracker='custom_tracker.yaml'
|
||||
|
||||
```
|
||||
|
||||
Please refer to [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg)
|
||||
page.
|
||||
|
Reference in New Issue
Block a user