General ultralytics==8.0.6 updates (#351)

Co-authored-by: Dzmitry Plashchynski <plashchynski@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-01-14 17:39:50 +01:00
committed by GitHub
parent 70427579b8
commit f8e32c4c13
16 changed files with 79 additions and 80 deletions

View File

@ -1,13 +1,16 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from pathlib import Path
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, SETTINGS
from ultralytics.yolo.v8 import classify, detect, segment
CFG_DET = 'yolov8n.yaml'
CFG_SEG = 'yolov8n-seg.yaml'
CFG_CLS = 'squeezenet1_0'
CFG = get_config(DEFAULT_CONFIG)
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
SOURCE = ROOT / "assets"
@ -18,15 +21,14 @@ def test_detect():
# Trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = detect.DetectionValidator(args=CFG)
val(model=trained_model)
val(model=trainer.best) # validate best.pt
# Predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model="yolov8n.pt", return_outputs=True)
result = pred(source=SOURCE, model=f"{MODEL}.pt", return_outputs=True)
assert len(list(result)), "predictor test failed"
overrides["resume"] = trainer.last
@ -49,15 +51,14 @@ def test_segment():
# trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = segment.SegmentationValidator(args=CFG)
val(model=trained_model)
val(model=trainer.best) # validate best.pt
# Predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model="yolov8n-seg.pt", return_outputs=True)
result = pred(source=SOURCE, model=f"{MODEL}-seg.pt", return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"
# Test resume
@ -82,13 +83,12 @@ def test_classify():
# Trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.train()
trained_model = trainer.best
# Validator
val = classify.ClassificationValidator(args=CFG)
val(model=trained_model)
val(model=trainer.best)
# Predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=trained_model, return_outputs=True)
result = pred(source=SOURCE, model=trainer.best, return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"