Segmentation support & other enchancements (#40)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent c617ee1c79
commit f56c9bcc26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -21,7 +21,8 @@ jobs:
os: [ ubuntu-latest ]
python-version: [ '3.10' ]
model: [ yolov5n ]
include:
torch: [ latest ]
# include:
# - os: ubuntu-latest
# python-version: '3.7' # '3.6.8' min
# model: yolov5n
@ -31,10 +32,10 @@ jobs:
# - os: ubuntu-latest
# python-version: '3.9'
# model: yolov5n
- os: ubuntu-latest
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
model: yolov5n
torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
# - os: ubuntu-latest
# python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
# model: yolov5n
# torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
@ -93,9 +94,8 @@ jobs:
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
echo "TODO"
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=1 img_size=64
- name: Test classification
shell: bash # for Windows compatibility
run: |
echo "TODO"
# python ultralytics/yolo/v8/classify/train.py model=resnet18 data=mnist2560 epochs=1 img_size=64
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=mnist160 epochs=1 img_size=32

@ -1,6 +1,7 @@
from itertools import repeat
from multiprocessing.pool import Pool
from pathlib import Path
from typing import OrderedDict
import torchvision
from tqdm import tqdm
@ -205,7 +206,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
else:
sample = self.torch_transforms(im)
return sample, j
return OrderedDict(img=sample, cls=j)
# TODO: support semantic segmentation

@ -1,12 +1,17 @@
"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
"""
# TODOs
# 1. finish _set_model_attributes
# 2. allow num_class update for both pretrained and csv_loaded models
# 3. save
import os
import time
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from telnetlib import TLS
from typing import Dict, Union
import torch
@ -52,6 +57,8 @@ class BaseTrainer:
# Model and Dataloaders.
self.trainset, self.testset = self.get_dataset(self.args.data)
if self.args.cfg is not None:
self.model = self.load_cfg(self.args.cfg)
if self.args.model is not None:
self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
@ -133,6 +140,20 @@ class BaseTrainer:
self.test_loader = self.get_dataloader(self.testset, batch_size=self.args.batch_size * 2, rank=rank)
self.validator = self.get_validator()
print("created testloader :", rank)
self.console.info(self.progress_string())
def _set_model_attributes(self):
# TODO: fix and use after self.data_dict is available
'''
head = utils.torch_utils.de_parallel(self.model).model[-1]
self.args.box *= 3 / head.nl # scale to layers
self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names
'''
def _do_train(self, rank, world_size):
if world_size > 1:
@ -153,13 +174,17 @@ class BaseTrainer:
pbar = tqdm(enumerate(self.train_loader),
total=len(self.train_loader),
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
tloss = 0
for i, (images, labels) in pbar:
tloss = None
for i, batch in pbar:
# img, label (classification)/ img, targets, paths, _, masks(detection)
# callback hook. on_batch_start
# forward
images, labels = self.preprocess_batch(images, labels)
self.loss = self.criterion(self.model(images), labels)
tloss = (tloss * i + self.loss.item()) / (i + 1)
batch = self.preprocess_batch(batch)
# TODO: warmup, multiscale
preds = self.model(batch["img"])
self.loss, self.loss_items = self.criterion(preds, batch)
tloss = (tloss * i + self.loss_items) / (i + 1) if tloss is not None else self.loss_items
# backward
self.model.zero_grad(set_to_none=True)
@ -170,9 +195,13 @@ class BaseTrainer:
self.trigger_callbacks('on_batch_end')
# log
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
mem = (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
loss_len = tloss.shape[0] if len(tloss.size()) else 1
losses = tloss if loss_len > 1 else torch.unsqueeze(tloss, 0)
if rank in {-1, 0}:
pbar.desc = f"{f'{epoch + 1}/{self.args.epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
pbar.set_description(
(" {} " + "{:.3f} " * (2 + loss_len)).format(f'{epoch + 1}/{self.args.epochs}', mem, *losses,
batch["img"].shape[-1]))
if rank in [-1, 0]:
# validation
@ -240,6 +269,9 @@ class BaseTrainer:
return model
def load_cfg(self, cfg):
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):
pass
@ -250,11 +282,11 @@ class BaseTrainer:
self.scaler.update()
self.optimizer.zero_grad()
def preprocess_batch(self, images, labels):
def preprocess_batch(self, batch):
"""
Allows custom preprocessing model inputs and ground truths depending on task type
"""
return images.to(self.device, non_blocking=True), labels.to(self.device)
return batch
def validate(self):
"""
@ -270,14 +302,17 @@ class BaseTrainer:
def build_targets(self, preds, targets):
pass
def criterion(self, preds, targets):
def criterion(self, preds, batch):
"""
Returns loss and individual loss items as Tensor
"""
pass
def progress_string(self):
"""
Returns progress string depending on task type.
"""
pass
return ''
def usage_help(self):
"""

@ -1,8 +1,10 @@
import logging
import torch
from omegaconf import DictConfig, OmegaConf
from tqdm import tqdm
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import select_device
@ -12,12 +14,15 @@ class BaseValidator:
Base validator class.
"""
def __init__(self, dataloader, device='', half=False, pbar=None, logger=None):
def __init__(self, dataloader, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.half = half
self.device = select_device(device, dataloader.batch_size)
self.pbar = pbar
self.logger = logger or logging.getLogger()
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.device = select_device(self.args.device, dataloader.batch_size)
self.cuda = self.device.type != 'cpu'
self.batch_i = None
self.training = True
def __call__(self, trainer=None, model=None):
"""
@ -25,45 +30,48 @@ class BaseValidator:
if trainer is passed (trainer gets priority).
"""
training = trainer is not None
self.training = training
# trainer = trainer or self.trainer_class.get_trainer()
assert training or model is not None, "Either trainer or model is needed for validation"
if training:
model = trainer.model
self.half &= self.device.type != 'cpu'
model = model.half() if self.half else model
self.args.half &= self.device.type != 'cpu'
model = model.half() if self.args.half else model
else: # TODO: handle this when detectMultiBackend is supported
# model = DetectMultiBacked(model)
pass
# TODO: implement init_model_attributes()
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
loss = 0
n_batches = len(self.dataloader)
desc = self.set_desc()
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
self.init_metrics()
self.init_metrics(model)
with torch.cuda.amp.autocast(enabled=self.device.type != 'cpu'):
for images, labels in bar:
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
with dt[0]:
images, labels = self.preprocess_batch(images, labels)
batch = self.preprocess_batch(batch)
# inference
with dt[1]:
preds = model(images)
preds = model(batch["img"])
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if training:
loss += trainer.criterion(preds, labels) / images.shape[0]
loss += trainer.criterion(preds, batch)[0]
# pre-process predictions
with dt[3]:
preds = self.preprocess_preds(preds)
self.update_metrics(preds, labels)
self.update_metrics(preds, batch)
stats = self.get_stats()
self.check_stats(stats)
@ -81,8 +89,8 @@ class BaseValidator:
return stats
def preprocess_batch(self, images, labels):
return images.to(self.device, non_blocking=True), labels.to(self.device)
def preprocess_batch(self, batch):
return batch
def preprocess_preds(self, preds):
return preds
@ -90,7 +98,7 @@ class BaseValidator:
def init_metrics(self):
pass
def update_metrics(self, preds, targets):
def update_metrics(self, preds, batch):
pass
def get_stats(self):
@ -102,5 +110,5 @@ class BaseValidator:
def print_results(self):
pass
def set_desc(self):
def get_desc(self):
pass

@ -4,6 +4,7 @@
# Train settings -------------------------------------------------------------------------------------------------------
model: null # i.e. yolov5s.pt
cfg: null # i.e. yolov5s.yaml
data: null # i.e. coco128.yaml
epochs: 300
batch_size: 16
@ -20,6 +21,23 @@ optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: False
seed: 0
local_rank: -1
single_cls: False # train multi-class data as single-class
image_weights: False # use weighted image selection for training
shuffle: True
rect: False # support rectangular training
overlap_mask: True # Segmentation masks overlap
mask_ratio: 4 # Segmentation mask downsample ratio
# Val/Test settings ----------------------------------------------------------------------------------------------------
save_json: False
save_hybrid: False
conf_thres: 0.001
iou_thres: 0.6
max_det: 300
half: True
plots: False
save_txt: False
task: 'val'
# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
@ -51,6 +69,7 @@ fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
label_smoothing: 0.0
# Hydra configs --------------------------------------------------------------------------------------------------------
hydra:

@ -2,11 +2,19 @@
"""
Model validation metrics
"""
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from ultralytics.yolo.utils import TryExcept
# boxes
def box_area(box):
# box = xyxy(4,n)
return (box[2] - box[0]) * (box[3] - box[1])
@ -53,3 +61,484 @@ def box_iou(box1, box2, eps=1e-7):
# IoU = inter / (area1 + area2 - inter)
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def mask_iou(mask1, mask2, eps=1e-7):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [M, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, [N, M]
"""
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def masks_iou(mask1, mask2, eps=1e-7):
"""
mask1: [N, n] m1 means number of predicted objects
mask2: [N, n] m2 means number of gt objects
Note: n means image_w x image_h
return: masks iou, (N, )
"""
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
# return positive, negative label smoothing BCE targets
return 1.0 - 0.5 * eps, 0.5 * eps
# losses
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = torch.sigmoid(pred) # prob from logits
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = (1.0 - p_t) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
def __init__(self, nc, conf=0.25, iou_thres=0.45):
self.matrix = np.zeros((nc + 1, nc + 1))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_batch(self, detections, labels):
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
None, updates confusion matrix accordingly
"""
if detections is None:
gt_classes = labels.int()
for gc in gt_classes:
self.matrix[self.nc, gc] += 1 # background FN
return
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # true background
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # predicted background
def matrix(self):
return self.matrix
def tp_fp(self):
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return tp[:-1], fp[:-1] # remove background class
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
def plot(self, normalize=True, save_dir='', names=()):
import seaborn as sn
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
nc, nn = self.nc, len(names) # number of classes, names
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
ticklabels = (names + ['background']) if labels else "auto"
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array,
ax=ax,
annot=nc < 30,
annot_kws={
"size": 8},
cmap='Blues',
fmt='.2f',
square=True,
vmin=0.0,
xticklabels=ticklabels,
yticklabels=ticklabels).set_facecolor((1, 1, 1))
ax.set_ylabel('True')
ax.set_ylabel('Predicted')
ax.set_title('Confusion Matrix')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
plt.close(fig)
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
def fitness_detection(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_segmentation(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
return (x[:, :8] * w).sum(1)
def smooth(y, f=0.05):
# Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves
# Arguments
recall: The recall curve (list)
precision: The precision curve (list)
# Returns
Average precision, precision curve, recall curve
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at mAP@0.5
save_dir: Plot save directory
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + eps)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = dict(enumerate(names)) # to dict
# TODO: plot
'''
if plot:
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
'''
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
def ap_per_class_box_and_mask(
tp_m,
tp_b,
conf,
pred_cls,
target_cls,
plot=False,
save_dir=".",
names=(),
):
"""
Args:
tp_b: tp of boxes.
tp_m: tp of masks.
other arguments see `func: ap_per_class`.
"""
results_boxes = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Box")[2:]
results_masks = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Mask")[2:]
results = {
"boxes": {
"p": results_boxes[0],
"r": results_boxes[1],
"ap": results_boxes[3],
"f1": results_boxes[2],
"ap_class": results_boxes[4]},
"masks": {
"p": results_masks[0],
"r": results_masks[1],
"ap": results_masks[3],
"f1": results_masks[2],
"ap_class": results_masks[4]}}
return results
class Metric:
def __init__(self) -> None:
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
@property
def ap50(self):
"""AP@0.5 of all classes.
Return:
(nc, ) or [].
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
@property
def ap(self):
"""AP@0.5:0.95
Return:
(nc, ) or [].
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
@property
def mp(self):
"""mean precision of all classes.
Return:
float.
"""
return self.p.mean() if len(self.p) else 0.0
@property
def mr(self):
"""mean recall of all classes.
Return:
float.
"""
return self.r.mean() if len(self.r) else 0.0
@property
def map50(self):
"""Mean AP@0.5 of all classes.
Return:
float.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
@property
def map(self):
"""Mean AP@0.5:0.95 of all classes.
Return:
float.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
def mean_results(self):
"""Mean of results, return mp, mr, map50, map"""
return (self.mp, self.mr, self.map50, self.map)
def class_result(self, i):
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
def get_maps(self, nc):
maps = np.zeros(nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
def update(self, results):
"""
Args:
results: tuple(p, r, ap, f1, ap_class)
"""
p, r, all_ap, f1, ap_class_index = results
self.p = p
self.r = r
self.all_ap = all_ap
self.f1 = f1
self.ap_class_index = ap_class_index
class Metrics:
"""Metric for boxes and masks."""
def __init__(self) -> None:
self.metric_box = Metric()
self.metric_mask = Metric()
def update(self, results):
"""
Args:
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
"""
self.metric_box.update(list(results["boxes"].values()))
self.metric_mask.update(list(results["masks"].values()))
def mean_results(self):
return self.metric_box.mean_results() + self.metric_mask.mean_results()
def class_result(self, i):
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
def get_maps(self, nc):
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
@property
def ap_class_index(self):
# boxes and masks have the same ap_class_index
return self.metric_box.ap_class_index

@ -5,6 +5,7 @@ import time
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from ultralytics.yolo.utils import LOGGER
@ -32,14 +33,23 @@ class Profile(contextlib.ContextDecorator):
return time.time()
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
return [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
def segment2box(segment, width=640, height=640):
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
x, y = segment.T # segment xy
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
x, y, = (
x[inside],
y[inside],
)
x, y, = x[inside], y[inside]
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros(4) # xyxy
@ -304,3 +314,63 @@ def resample_segments(segments, n=1000):
xp = np.arange(len(s))
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
return segments
def crop_mask(masks, boxes):
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask_upsample(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
Crop before upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
downsampled_bboxes = bboxes.clone()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
return masks.gt_(0.5)

@ -179,3 +179,13 @@ def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
def intersect_state_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
def is_parallel(model):
# Returns True if model is of type DP or DDP
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def de_parallel(model):
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model

@ -1,7 +1,7 @@
from pathlib import Path
from ultralytics.yolo.v8 import classify
from ultralytics.yolo.v8 import classify, segment
ROOT = Path(__file__).parents[0] # yolov8 ROOT
__all__ = ["classify"]
__all__ = ["classify", "segment"]

@ -38,13 +38,22 @@ class ClassificationTrainer(BaseTrainer):
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.img_size,
batch_size=self.args.batch_size,
rank=rank)
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device)
batch["cls"] = batch["cls"].to(self.device)
return batch
def get_validator(self):
return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
def criterion(self, preds, targets):
return torch.nn.functional.cross_entropy(preds, targets)
def criterion(self, preds, batch):
loss = torch.nn.functional.cross_entropy(preds, batch["cls"])
return loss, loss
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)

@ -5,10 +5,16 @@ from ultralytics.yolo.engine.validator import BaseValidator
class ClassificationValidator(BaseValidator):
def init_metrics(self):
def init_metrics(self, model):
self.correct = torch.tensor([])
def update_metrics(self, preds, targets):
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device)
batch["cls"] = batch["cls"].to(self.device)
return batch
def update_metrics(self, preds, batch):
targets = batch["cls"]
correct_in_batch = (targets[:, None] == preds).float()
self.correct = torch.cat((self.correct, correct_in_batch))

@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]

@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

@ -0,0 +1,2 @@
from ultralytics.yolo.v8.segment.train import SegmentationTrainer
from ultralytics.yolo.v8.segment.val import SegmentationValidator

@ -0,0 +1,269 @@
import subprocess
import time
from pathlib import Path
import hydra
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, de_parallel, torch_distributed_zero_first
# BaseTrainer python usage
class SegmentationTrainer(BaseTrainer):
def get_dataset(self, dataset):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
data = Path("datasets") / dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
# TODO: add colorstr
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {'bold', data_dir}\n"
self.console.info(s)
train_set = data_dir.parent / "coco128-seg"
test_set = train_set
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size, rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(self.model.stride.max() if self.model else 0), 32)
loader = build_dataloader(
img_path=dataset_path,
img_size=self.args.img_size,
batch_size=batch_size,
single_cls=self.args.single_cls,
cache=self.args.cache,
image_weights=self.args.image_weights,
stride=gs,
rect=self.args.rect,
rank=rank,
workers=self.args.workers,
shuffle=self.args.shuffle,
use_segments=True,
)[0]
return loader
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def load_cfg(self, cfg):
return SegmentationModel(cfg, nc=80)
def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]
sort_obj_iou = False
autobalance = False
# init losses
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
cp, cn = smooth_BCE(eps=self.args.label_smoothing) # positive, negative BCE targets
# Focal loss
g = self.args.fl_gamma
if self.args.fl_gamma > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
ssi = list(head.stride).index(16) if autobalance else 0 # stride 16 index
BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance
def single_mask_loss(gt_mask, pred, proto, xyxy, area):
# Mask loss for one image
pred_mask = (pred @ proto.view(head.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def build_targets(p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
nonlocal head
na, nt = head.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1,
nt) # same as .repeat_interleave(nt)
if self.args.overlap_mask:
batch = p[0].shape[0]
ti = []
for i in range(batch):
num = (targets[:, 0] == i).sum() # find number of targets of each image
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
ti = torch.cat(ti, 1) # (na, nt)
else:
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
g = 0.5 # bias
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() * g # offsets
for i in range(head.nl):
anchors, shape = head.anchors[i], p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
tidxs.append(tidx)
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
return tcls, tbox, indices, anch, tidxs, xywhn
if self.model.training:
p, proto, = preds
else:
p, proto, train_out = preds
p = train_out
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
masks = batch["masks"]
targets, masks = targets.to(self.device), masks.to(self.device).float()
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
lcls = torch.zeros(1, device=self.device)
lbox = torch.zeros(1, device=self.device)
lobj = torch.zeros(1, device=self.device)
lseg = torch.zeros(1, device=self.device)
tcls, tbox, indices, anchors, tidxs, xywhn = build_targets(p, targets)
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
n = b.shape[0] # number of targets
if n:
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, head.nc, nm), 1) # subset of predictions
# Box regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if gr < 1:
iou = (1.0 - gr) + gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if head.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, cn, device=self.device) # targets
t[range(n), tcls[i]] = cp
lcls += BCEcls(pcls, t) # BCE
# Mask regression
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
for bi in b.unique():
j = b == bi # matching index
if True:
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
else:
mask_gti = masks[tidxs[i]][j]
lseg += single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
obji = BCEobj(pi[..., 4], tobj)
lobj += obji * balance[i] # obj loss
if autobalance:
balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if autobalance:
balance = [x / balance[ssi] for x in balance]
lbox *= self.args.box
lobj *= self.args.obj
lcls *= self.args.cls
lseg *= self.args.box / bs
loss = lbox + lobj + lcls + lseg
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
def progress_string(self):
return ('\n' + '%11s' * 7) % \
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Size')
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.cfg = v8.ROOT / "models/yolov5n-seg.yaml"
cfg.data = cfg.data or "coco128-segments" # or yolo.ClassificationDataset("mnist")
trainer = SegmentationTrainer(cfg)
trainer.train()
if __name__ == "__main__":
"""
CLI usage:
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640
TODO:
Direct cli support, i.e, yolov8 classify_train args.epochs 10
"""
train()

@ -0,0 +1,211 @@
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_requirements
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
fitness_segmentation, mask_iou)
from ultralytics.yolo.utils.modeling import yaml_load
from ultralytics.yolo.utils.torch_utils import de_parallel
class SegmentationValidator(BaseValidator):
def __init__(self, dataloader, pbar=None, logger=None, args=None):
super().__init__(dataloader, pbar, logger, args)
if self.args.save_json:
check_requirements(['pycocotools'])
self.process = ops.process_mask_upsample # more accurate
else:
self.process = ops.process_mask # faster
self.data_dict = yaml_load(self.args.data) if self.args.data else None
self.is_coco = False
self.class_map = None
self.targets = None
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 225
batch["bboxes"] = batch["bboxes"].to(self.device)
batch["masks"] = batch["masks"].to(self.device).float()
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def init_metrics(self, model):
head = de_parallel(model).model[-1]
if self.data_dict:
self.is_coco = isinstance(self.data_dict.get('val'),
str) and self.data_dict['val'].endswith(f'coco{os.sep}val2017.txt')
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.nc = head.nc
self.nm = head.nm
self.names = model.names
if isinstance(self.names, (list, tuple)): # old format
self.names = dict(enumerate(self.names))
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
self.niou = self.iouv.numel()
self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metrics()
self.loss = torch.zeros(4, device=self.device)
self.jdict = []
self.stats = []
def get_desc(self):
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P",
"R", "mAP50", "mAP50-95)")
def preprocess_preds(self, preds):
p = ops.non_max_suppression(preds[0],
self.args.conf_thres,
self.args.iou_thres,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
nm=self.nm)
return (p, preds[0], preds[2])
def update_metrics(self, preds, batch):
# Metrics
plot_masks = [] # masks for plotting
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
labels = self.targets[self.targets[:, 0] == si, 1:]
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
shape = Path(batch["im_file"][si])
# path = batch["shape"][si][0]
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_masks, correct_bboxes, *torch.zeros(
(2, 0), device=self.device), labels[:, 0]))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
continue
# Masks
midx = [si] if self.args.overlap_mask else self.targets[:, 0] == si
gt_masks = batch["masks"][midx]
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:])
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape, batch["shape"][si][1]) # native-space pred
# Evaluate
if nl:
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape, batch["shapes"][si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
correct_masks = self._process_batch(predn, labelsn, self.iouv, pred_masks, gt_masks, masks=True)
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
0])) # (conf, pcls, tcls)
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
if self.plots and self.batch_i < 3:
plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
# TODO: Save/log
'''
if self.args.save_txt:
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
if self.args.save_json:
pred_masks = scale_image(im[si].shape[1:],
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
'''
# TODO Plot images
'''
if self.args.plots and self.batch_i < 3:
if len(plot_masks):
plot_masks = torch.cat(plot_masks, dim=0)
plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
'''
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
# TODO: save_dir
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir='', names=self.names)
self.metrics.update(results)
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
keys = ["mp_bbox", "mr_bbox", "map50_bbox", "map_bbox", "mp_mask", "mr_mask", "map50_mask", "map_mask"]
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
metrics |= zip(keys, self.metrics.mean_results())
return metrics
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
self.logger.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
# plot TODO: save_dir
if self.args.plots:
self.confusion_matrix.plot(save_dir='', names=list(self.names.values()))
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
if masks:
if overlap:
nl = len(labels)
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
if gt_masks.shape[1:] != pred_masks.shape[1:]:
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
gt_masks = gt_masks.gt_(0.5)
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
else: # boxes
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)

@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
]
Loading…
Cancel
Save