`ultralytics 8.0.42` DDP fix and Docs updates (#1065)

Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent f6e393c1d2
commit f2a7a29e53
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -17,7 +17,7 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
os: [ubuntu-latest]
python-version: ['3.10'] # requires python<=3.9
model: [yolov8n]
steps:

@ -32,10 +32,11 @@ predictor's call method.
Results object consists of these component objects:
- `Results.boxes` : `Boxes` object with properties and methods for manipulating bboxes
- `Results.masks` : `Masks` object used to index masks or to get segment coordinates.
- `Results.probs` : `torch.Tensor` containing the class probabilities/logits.
- `Results.orig_shape` : `tuple` containing the original image size as (height, width).
- `Results.boxes`: `Boxes` object with properties and methods for manipulating bboxes
- `Results.masks`: `Masks` object used to index masks or to get segment coordinates.
- `Results.probs`: `torch.Tensor` containing the class probabilities/logits.
- `Results.orig_img`: Original image loaded in memory.
- `Results.path`: `Path` containing the path to input image
Each result is composed of torch.Tensor by default, in which you can easily use following functionality:
@ -94,18 +95,18 @@ results[0].probs # cls prob, (num_class, )
Class reference documentation for `Results` module and its components can be found [here](reference/results.md)
## Visualizing results
## Plotting results
You can use `visualize()` function of `Result` object to get a visualization. It plots all components(boxes, masks,
You can use `plot()` function of `Result` object to plot results on in image object. It plots all components(boxes, masks,
classification logits, etc) found in the results object
```python
res = model(img)
res_plotted = res[0].visualize()
cv2.imshow("result", res_plotted)
res = model(img)
res_plotted = res[0].plot()
cv2.imshow("result", res_plotted)
```
!!! example "`visualize()` arguments"
!!! example "`plot()` arguments"
`show_conf (bool)`: Show confidence

@ -0,0 +1,86 @@
Object tracking is a task that involves identifying the location and class of objects, then assigning a unique ID to
that detection in video streams.
The output of tracker is the same as detection with an added object ID.
## Available Trackers
The following tracking algorithms have been implemented and can be enabled by passing `tracker=tracker_type.yaml`
* [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - `botsort.yaml`
* [ByteTrack](https://github.com/ifzhang/ByteTrack) - `bytetrack.yaml`
The default tracker is BoT-SORT.
## Tracking
Use a trained YOLOv8n/YOLOv8n-seg model to run tracker on video streams.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # load an official detection model
model = YOLO("yolov8n-seg.pt") # load an official segmentation model
model = YOLO("path/to/best.pt") # load a custom model
# Track with the model
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
```
=== "CLI"
```bash
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" # official detection model
yolo track model=yolov8n-seg.pt source=... # official segmentation model
yolo track model=path/to/best.pt source=... # custom model
yolo track model=path/to/best.pt tracker="bytetrack.yaml" # bytetrack tracker
```
As in the above usage, we support both the detection and segmentation models for tracking and the only thing you need to do is loading the corresponding(detection or segmentation) model.
## Configuration
### Tracking
Tracking shares the configuration with predict, i.e `conf`, `iou`, `show`. More configurations please refer to [predict page](https://docs.ultralytics.com/cfg/#prediction).
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", conf=0.3, iou=0.5, show=True)
```
=== "CLI"
```bash
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" conf=0.3, iou=0.5 show
```
### Tracker
We also support using a modified tracker config file, just copy a config file i.e `custom_tracker.yaml` from [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg) and modify any configurations(expect the `tracker_type`) you need to.
!!! example ""
=== "Python"
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", tracker='custom_tracker.yaml')
```
=== "CLI"
```bash
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" tracker='custom_tracker.yaml'
```
Please refer to [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg) page.

@ -3,9 +3,10 @@ This is a list of real-world applications and walkthroughs. These can be folders
## Ultralytics YOLO example applications
| Title | Format | Contributor |
| --------------------------------------------------------------- | ------------------ | --------------------------------------------------- |
| [Yolov8/yolov5 ONNX Inference with C++](./YOLOv8-CPP-Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
| [YOLOv8-OpenCV-ONNX-Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
| ------------------------------------------------------------------------ | ------------------ | --------------------------------------------------- |
| [YOLO ONNX detection Inference with C++](./YOLOv8_CPP_Inference) | C++/ONNX | [Justas Bartnykas](https://github.com/JustasBart) |
| [YOLO OpenCV ONNX detection Python](./YOLOv8-OpenCV-ONNX-Python) | OpenCV/Python/ONNX | [Farid Inawan](https://github.com/frdteknikelektro) |
| [YOLO .Net ONNX detection C#](https://www.nuget.org/packages/Yolov8.Net) | C# .Net | [Samuel Stainback](https://github.com/sstainba) |
## How can you contribute ?

@ -123,7 +123,7 @@
"Downloading https://ultralytics.com/images/zidane.jpg to zidane.jpg...\n",
"100% 165k/165k [00:00<00:00, 87.4MB/s]\n",
"image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 13.3ms\n",
"Speed: 0.5ms pre-process, 13.3ms inference, 43.5ms postprocess per image at shape (1, 3, 640, 640)\n",
"Speed: 0.5ms preprocess, 13.3ms inference, 43.5ms postprocess per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/predict\u001b[0m\n"
]
}
@ -268,7 +268,7 @@
" scissors 128 1 1 0 0.249 0.0746\n",
" teddy bear 128 21 0.877 0.333 0.591 0.394\n",
" toothbrush 128 5 0.743 0.6 0.638 0.374\n",
"Speed: 2.4ms pre-process, 7.8ms inference, 0.0ms loss, 3.3ms post-process per image\n"
"Speed: 2.4ms preprocess, 7.8ms inference, 0.0ms loss, 3.3ms postprocess per image\n"
]
}
]
@ -439,7 +439,7 @@
" scissors 128 1 1 0 0.142 0.0426\n",
" teddy bear 128 21 0.587 0.476 0.63 0.458\n",
" toothbrush 128 5 0.784 0.736 0.898 0.544\n",
"Speed: 2.0ms pre-process, 4.0ms inference, 0.0ms loss, 2.5ms post-process per image\n",
"Speed: 2.0ms preprocess, 4.0ms inference, 0.0ms loss, 2.5ms postprocess per image\n",
"Results saved to \u001b[1mruns/detect/train\u001b[0m\n"
]
}

@ -105,6 +105,7 @@ nav:
- Tasks:
- Detection: tasks/detection.md
- Segmentation: tasks/segmentation.md
- Multi-Object Tracking: tasks/tracking.md
- Classification: tasks/classification.md
- Usage:
- CLI: cli.md

@ -170,15 +170,16 @@ def test_predict_callback_and_setup():
def test_result():
model = YOLO('yolov8n-seg.pt')
res = model([SOURCE, SOURCE])
res[0].numpy()
res[0].cpu().numpy()
resimg = res[0].visualize(show_conf=False)
print(resimg)
res[0].plot(show_conf=False)
print(res[0].path)
model = YOLO('yolov8n.pt')
res = model(SOURCE)
res[0].visualize()
res[0].plot()
print(res[0].path)
model = YOLO('yolov8n-cls.pt')
res = model(SOURCE)
res[0].visualize()
res[0].plot()
print(res[0].path)

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = '8.0.41'
__version__ = '8.0.42'
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils.checks import check_yolo as checks

@ -232,6 +232,3 @@ class Detections:
def __repr__(self):
return f'YOLOv8 {self.__class__} instance\n' + self.__str__()
print('works')

@ -381,7 +381,7 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
return ensemble[-1]
# Return ensemble
print(f'Ensemble created with {weights}\n')
LOGGER.info(f'Ensemble created with {weights}\n')
for k in 'names', 'nc', 'yaml':
setattr(ensemble, k, getattr(ensemble[0], k))
ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride

@ -16,7 +16,7 @@ model = YOLO("yolov8n.pt") # or a segmentation model .i.e yolov8n-seg.pt
model.track(
source="video/streams",
stream=True,
tracker="botsort.yaml/bytetrack.yaml",
tracker="botsort.yaml", # or 'bytetrack.yaml'
...,
)
```

@ -1 +1,3 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from .trackers import BOTSORT, BYTETracker

@ -1,3 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Default YOLO tracker settings for BoT-SORT tracker https://github.com/NirAharon/BoT-SORT
tracker_type: botsort # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association
@ -7,7 +10,7 @@ match_thresh: 0.8 # threshold for matching tracks
# min_box_area: 10 # threshold for min box areas(for tracker evaluation, not used for now)
# mot20: False # for tracker evaluation(not used for now)
# Botsort settings
# BoT-SORT settings
cmc_method: sparseOptFlow # method of global motion compensation
# ReID model related thresh (not supported yet)
proximity_thresh: 0.5

@ -1,3 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
# Default YOLO tracker settings for ByteTrack tracker https://github.com/ifzhang/ByteTrack
tracker_type: bytetrack # tracker type, ['botsort', 'bytetrack']
track_high_thresh: 0.5 # threshold for the first association
track_low_thresh: 0.1 # threshold for the second association

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import torch
from ultralytics.tracker import BOTSORT, BYTETracker

@ -1,2 +1,4 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from .bot_sort import BOTSORT
from .byte_tracker import BYTETracker

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from collections import OrderedDict
import numpy as np

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from collections import deque
import numpy as np
@ -97,7 +99,7 @@ class BOTSORT(BYTETracker):
self.appearance_thresh = args.appearance_thresh
if args.with_reid:
# haven't supported bot-sort(reid) yet
# haven't supported BoT-SORT(reid) yet
self.encoder = None
# self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation])
self.gmc = GMC(method=args.cmc_method)

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import numpy as np
from ..utils import matching

@ -1,9 +1,13 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import copy
import cv2
import matplotlib.pyplot as plt
import numpy as np
from ultralytics.yolo.utils import LOGGER
class GMC:
@ -108,7 +112,7 @@ class GMC:
try:
(cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
except Exception as e:
print(f'Warning: find transform failed. Set warp as identity {e}')
LOGGER.warning(f'WARNING: find transform failed. Set warp as identity {e}')
return H
@ -229,7 +233,7 @@ class GMC:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
print('Warning: not enough matching points')
LOGGER.warning('WARNING: not enough matching points')
# Store to next iteration
self.prevFrame = frame.copy()
@ -288,7 +292,7 @@ class GMC:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
print('Warning: not enough matching points')
LOGGER.warning('WARNING: not enough matching points')
# Store to next iteration
self.prevFrame = frame.copy()

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import numpy as np
import scipy.linalg
@ -234,7 +236,7 @@ class KalmanFilterXYAH:
class KalmanFilterXYWH:
"""
For bot-sort
For BoT-SORT
A simple Kalman filter for tracking bounding boxes in image space.
The 8-dimensional state space

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import lap
import numpy as np
import scipy

@ -1136,11 +1136,11 @@ class HUBDatasetStats():
# Save, print and return
if save:
stats_path = self.hub_dir / 'stats.json'
print(f'Saving {stats_path.resolve()}...')
LOGGER.info(f'Saving {stats_path.resolve()}...')
with open(stats_path, 'w') as f:
json.dump(self.stats, f) # save stats.json
if verbose:
print(json.dumps(self.stats, indent=2, sort_keys=False))
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False))
return self.stats
def process_images(self):
@ -1154,7 +1154,7 @@ class HUBDatasetStats():
with ThreadPool(NUM_THREADS) as pool:
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=total, desc=desc):
pass
print(f'Done. All images saved to {self.im_dir}')
LOGGER.info(f'Done. All images saved to {self.im_dir}')
return self.im_dir

@ -75,7 +75,6 @@ from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
CUDA = torch.cuda.is_available()
ARM64 = platform.machine() in ('arm64', 'aarch64')
@ -324,7 +323,7 @@ class Exporter:
# Simplify
if self.args.simplify:
try:
check_requirements(('onnxsim', 'onnxruntime-gpu' if CUDA else 'onnxruntime'))
check_requirements(('onnxsim', 'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'))
import onnxsim
LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
@ -506,10 +505,12 @@ class Exporter:
try:
import tensorflow as tf # noqa
except ImportError:
check_requirements(f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if CUDA else '-cpu'}")
check_requirements(
f"tensorflow{'-macos' if MACOS else '-aarch64' if ARM64 else '' if torch.cuda.is_available() else '-cpu'}"
)
import tensorflow as tf # noqa
check_requirements(('onnx', 'onnx2tf', 'sng4onnx', 'onnxsim', 'onnx_graphsurgeon', 'tflite_support',
'onnxruntime-gpu' if CUDA else 'onnxruntime'),
'onnxruntime-gpu' if torch.cuda.is_available() else 'onnxruntime'),
cmds='--extra-index-url https://pypi.ngc.nvidia.com')
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')

@ -32,7 +32,7 @@ class YOLO:
YOLO (You Only Look Once) object detection model.
Args:
model (str or Path): Path to the model file to load or create.
model (str, Path): Path to the model file to load or create.
type (str): Type/version of models to use. Defaults to "v8".
Attributes:
@ -62,7 +62,7 @@ class YOLO:
predict(source=None, stream=False, **kwargs): Perform prediction using the YOLO model.
Returns:
List[ultralytics.yolo.engine.results.Results]: The prediction results.
list(ultralytics.yolo.engine.results.Results): The prediction results.
"""
def __init__(self, model='yolov8n.pt', type='v8') -> None:
@ -114,6 +114,7 @@ class YOLO:
self.task = guess_model_task(cfg_dict)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
self.model = self.ModelClass(cfg_dict, verbose=verbose and RANK == -1) # initialize
self.overrides['model'] = self.cfg
def _load(self, weights: str):
"""
@ -204,7 +205,7 @@ class YOLO:
def track(self, source=None, stream=False, **kwargs):
from ultralytics.tracker.track import register_tracker
register_tracker(self)
# bytetrack-based method needs low confidence predictions as input
# ByteTrack-based method needs low confidence predictions as input
conf = kwargs.get('conf') or 0.1
kwargs['conf'] = conf
kwargs['mode'] = 'track'

@ -92,6 +92,7 @@ class BasePredictor:
self.annotator = None
self.data_path = None
self.source_type = None
self.batch = None
self.callbacks = defaultdict(list, callbacks.default_callbacks) # add callbacks
callbacks.add_integration_callbacks(self)

@ -28,13 +28,14 @@ class Results:
"""
def __init__(self, boxes=None, masks=None, probs=None, orig_img=None, names=None) -> None:
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None) -> None:
self.orig_img = orig_img
self.orig_shape = orig_img.shape[:2]
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
self.probs = probs if probs is not None else None
self.names = names
self.path = path
self.comp = ['boxes', 'masks', 'probs']
def pandas(self):
@ -42,7 +43,7 @@ class Results:
# TODO masks.pandas + boxes.pandas + cls.pandas
def __getitem__(self, idx):
r = Results(orig_img=self.orig_img)
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for item in self.comp:
if getattr(self, item) is None:
continue
@ -58,7 +59,7 @@ class Results:
self.probs = probs
def cpu(self):
r = Results(orig_img=self.orig_img)
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for item in self.comp:
if getattr(self, item) is None:
continue
@ -66,7 +67,7 @@ class Results:
return r
def numpy(self):
r = Results(orig_img=self.orig_img)
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for item in self.comp:
if getattr(self, item) is None:
continue
@ -74,7 +75,7 @@ class Results:
return r
def cuda(self):
r = Results(orig_img=self.orig_img)
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for item in self.comp:
if getattr(self, item) is None:
continue
@ -82,7 +83,7 @@ class Results:
return r
def to(self, *args, **kwargs):
r = Results(orig_img=self.orig_img)
r = Results(orig_img=self.orig_img, path=self.path, names=self.names)
for item in self.comp:
if getattr(self, item) is None:
continue
@ -123,7 +124,7 @@ class Results:
orig_shape (tuple, optional): Original image size.
""")
def visualize(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
def plot(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
"""
Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image
@ -146,9 +147,9 @@ class Results:
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
if masks is not None:
im_gpu = torch.as_tensor(img, dtype=torch.float16).permute(2, 0, 1).flip(0).contiguous()
im_gpu = F.resize(im_gpu, masks.data.shape[1:]) / 255
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im_gpu)
im = torch.as_tensor(img, dtype=torch.float16, device=masks.data.device).permute(2, 0, 1).flip(0)
im = F.resize(im.contiguous(), masks.data.shape[1:]) / 255
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im)
if logits is not None:
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
@ -371,24 +372,3 @@ class Masks:
Properties:
segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks.
""")
if __name__ == '__main__':
# test examples
results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640])
results = results.cuda()
print('--cuda--pass--')
results = results.cpu()
print('--cpu--pass--')
results = results.to('cuda:0')
print('--to-cuda--pass--')
results = results.to('cpu')
print('--to-cpu--pass--')
results = results.numpy()
print('--numpy--pass--')
# box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5])
# box = box.cuda()
# box = box.cpu()
# box = box.numpy()
# for b in box:
# print(b)

@ -11,7 +11,7 @@ import numpy as np
import torch
import torch.nn as nn
from ultralytics.yolo.utils import TryExcept
from ultralytics.yolo.utils import LOGGER, TryExcept
# boxes
@ -260,7 +260,7 @@ class ConfusionMatrix:
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
LOGGER.info(' '.join(map(str, self.matrix[i])))
def smooth(y, f=0.05):

@ -12,7 +12,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
from ultralytics.yolo.utils import threaded
from ultralytics.yolo.utils import LOGGER, threaded
from .checks import check_font, check_version, is_ascii
from .files import increment_path
@ -300,7 +300,7 @@ def plot_results(file='path/to/results.csv', dir='', segment=False):
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print(f'Warning: Plotting error for {f}: {e}')
LOGGER.warning(f'WARNING: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()

@ -167,10 +167,11 @@ def model_info(model, verbose=False, imgsz=640):
n_p = get_num_params(model)
n_g = get_num_gradients(model) # number gradients
if verbose:
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
LOGGER.info(
f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
flops = get_flops(model, imgsz)
@ -362,7 +363,7 @@ def profile(input, ops, n=10, device=None):
results = []
if not isinstance(device, torch.device):
device = select_device(device)
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}")
for x in input if isinstance(input, list) else [input]:
@ -393,10 +394,10 @@ def profile(input, ops, n=10, device=None):
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
print(e)
LOGGER.info(e)
results.append(None)
torch.cuda.empty_cache()
return results

@ -22,7 +22,9 @@ class ClassificationPredictor(BasePredictor):
results = []
for i, pred in enumerate(preds):
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
results.append(Results(probs=pred, orig_img=orig_img, names=self.model.names))
path, _, _, _, _ = self.batch
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred))
return results

@ -32,7 +32,9 @@ class DetectionPredictor(BasePredictor):
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
shape = orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
results.append(Results(boxes=pred, orig_img=orig_img, names=self.model.names))
path, _, _, _, _ = self.batch
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
return results
def write_results(self, idx, results, batch):

@ -24,9 +24,10 @@ class SegmentationPredictor(DetectionPredictor):
for i, pred in enumerate(p):
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
shape = orig_img.shape
if not len(pred):
results.append(Results(boxes=pred[:, :6], orig_img=orig_img,
names=self.model.names)) # save empty boxes
path, _, _, _, _ = self.batch
img_path = path[i] if isinstance(path, list) else path
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
continue
if self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
@ -34,7 +35,8 @@ class SegmentationPredictor(DetectionPredictor):
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
results.append(Results(boxes=pred[:, :6], masks=masks, orig_img=orig_img, names=self.model.names))
results.append(
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results
def write_results(self, idx, results, batch):

Loading…
Cancel
Save