ultralytics 8.0.87 improved Pose models (#2202)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Kirolos Atef <keroatef295@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-04-24 16:04:40 +02:00
committed by GitHub
parent 3d60347755
commit efc941aa81
14 changed files with 150 additions and 56 deletions

View File

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = '8.0.86'
__version__ = '8.0.87'
from ultralytics.hub import start
from ultralytics.yolo.engine.model import YOLO

View File

@ -89,12 +89,12 @@ Available Models:
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 49.7 | 79.7 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 59.2 | 85.8 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 63.6 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.0 | 89.9 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 68.9 | 90.4 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.5 | 91.3 | 4088.7 | 10.04 | 99.1 | 1066.4 |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
</details>

View File

@ -1,13 +1,15 @@
## Tracker
# Tracker
### Trackers
## Supported Trackers
- [x] ByteTracker
- [x] BoT-SORT
### Usage
## Usage
python interface:
### python interface:
You can use the Python interface to track objects using the YOLO model.
```python
from ultralytics import YOLO
@ -17,17 +19,68 @@ model.track(
source="video/streams",
stream=True,
tracker="botsort.yaml", # or 'bytetrack.yaml'
...,
show=True,
)
```
cli:
You can get the IDs of the tracked objects using the following code:
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
for result in model.track(source="video.mp4"):
print(
result.boxes.id.cpu().numpy().astype(int)
) # this will print the IDs of the tracked objects in the frame
```
If you want to use the tracker with a folder of images or when you loop on the video frames, you should use the `persist` parameter to tell the model that these frames are related to each other so the IDs will be fixed for the same objects. Otherwise, the IDs will be different in each frame because in each loop, the model creates a new object for tracking, but the `persist` parameter makes it use the same object for tracking.
```python
import cv2
from ultralytics import YOLO
cap = cv2.VideoCapture("video.mp4")
model = YOLO("yolov8n.pt")
while True:
ret, frame = cap.read()
if not ret:
break
results = model.track(frame, persist=True)
boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
ids = results[0].boxes.id.cpu().numpy().astype(int)
for box, id in zip(boxes, ids):
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(
frame,
f"Id {id}",
(box[0], box[1]),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 255),
2,
)
cv2.imshow("frame", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
```
## Change tracker parameters
You can change the tracker parameters by eding the `tracker.yaml` file which is located in the ultralytics/tracker/cfg folder.
## Command Line Interface (CLI)
You can also use the command line interface to track objects using the YOLO model.
```bash
yolo detect track source=... tracker=...
yolo segment track source=... tracker=...
yolo pose track source=... tracker=...
```
By default, trackers will use the configuration in `ultralytics/tracker/cfg`.
We also support using a modified tracker config file. Please refer to the tracker config files
in `ultralytics/tracker/cfg`.
in `ultralytics/tracker/cfg`.<br>

View File

@ -69,10 +69,10 @@ CFG_FRACTION_KEYS = ('dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay',
'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou') # fractional floats limited to 0.0 - 1.0
CFG_INT_KEYS = ('epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
'line_thickness', 'workspace', 'nbs', 'save_period')
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'cos_lr',
'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt',
'save_conf', 'save_crop', 'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms',
'retina_masks', 'boxes', 'keras', 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader')
CFG_BOOL_KEYS = ('save', 'exist_ok', 'verbose', 'deterministic', 'single_cls', 'rect', 'cos_lr', 'overlap_mask', 'val',
'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf', 'save_crop',
'show_labels', 'show_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader')
def cfg2dict(cfg):

View File

@ -7,7 +7,7 @@ from pathlib import Path
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, dataloader, distributed
from torch.utils.data import dataloader, distributed
from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots,
LoadStreams, LoadTensor, SourceTypes, autocast_list)
@ -38,6 +38,12 @@ class InfiniteDataLoader(dataloader.DataLoader):
for _ in range(len(self)):
yield next(self.iterator)
def reset(self):
"""Reset iterator.
This is useful when we want to modify settings of dataset while training.
"""
self.iterator = self._get_iterator()
class _RepeatSampler:
"""
@ -94,20 +100,17 @@ def build_dataloader(cfg, batch, img_path, data_info, stride=32, rect=False, ran
workers = cfg.workers if mode == 'train' else cfg.workers * 2
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return loader(
dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker,
persistent_workers=(nw > 0) and (loader == DataLoader), # persist workers if using default PyTorch DataLoader
generator=generator), dataset
return InfiniteDataLoader(dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker,
generator=generator), dataset
# Build classification

View File

@ -296,6 +296,7 @@ class BaseTrainer:
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, 'close_mosaic'):
self.train_loader.dataset.close_mosaic(hyp=self.args)
self.train_loader.reset()
if RANK in (-1, 0):
LOGGER.info(self.progress_string())