Update .pre-commit-config.yaml
(#1026)
This commit is contained in:
@ -4,4 +4,4 @@ from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predic
|
||||
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
|
||||
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
|
||||
|
||||
__all__ = ["ClassificationPredictor", "predict", "ClassificationTrainer", "train", "ClassificationValidator", "val"]
|
||||
__all__ = ['ClassificationPredictor', 'predict', 'ClassificationTrainer', 'train', 'ClassificationValidator', 'val']
|
||||
|
@ -28,7 +28,7 @@ class ClassificationPredictor(BasePredictor):
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
p, im, im0 = batch
|
||||
log_string = ""
|
||||
log_string = ''
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
self.seen += 1
|
||||
@ -65,9 +65,9 @@ class ClassificationPredictor(BasePredictor):
|
||||
|
||||
|
||||
def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
|
||||
else "https://ultralytics.com/images/bus.jpg"
|
||||
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
||||
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
||||
else 'https://ultralytics.com/images/bus.jpg'
|
||||
|
||||
args = dict(model=model, source=source)
|
||||
if use_python:
|
||||
@ -78,5 +78,5 @@ def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
predict()
|
||||
|
@ -16,14 +16,14 @@ class ClassificationTrainer(BaseTrainer):
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None):
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
overrides["task"] = "classify"
|
||||
overrides['task'] = 'classify'
|
||||
super().__init__(cfg, overrides)
|
||||
|
||||
def set_model_attributes(self):
|
||||
self.model.names = self.data["names"]
|
||||
self.model.names = self.data['names']
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
model = ClassificationModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
@ -53,11 +53,11 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
model = str(self.model)
|
||||
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
||||
if model.endswith(".pt"):
|
||||
if model.endswith('.pt'):
|
||||
self.model, _ = attempt_load_one_weight(model, device='cpu')
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = True # for training
|
||||
elif model.endswith(".yaml"):
|
||||
elif model.endswith('.yaml'):
|
||||
self.model = self.get_model(cfg=model)
|
||||
elif model in torchvision.models.__dict__:
|
||||
pretrained = True
|
||||
@ -67,15 +67,15 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
return # dont return ckpt. Classification doesn't support resume
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||
loader = build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch_size if mode == "train" else (batch_size * 2),
|
||||
augment=mode == "train",
|
||||
batch_size=batch_size if mode == 'train' else (batch_size * 2),
|
||||
augment=mode == 'train',
|
||||
rank=rank,
|
||||
workers=self.args.workers)
|
||||
# Attach inference transforms
|
||||
if mode != "train":
|
||||
if mode != 'train':
|
||||
if is_parallel(self.model):
|
||||
self.model.module.transforms = loader.dataset.torch_transforms
|
||||
else:
|
||||
@ -83,8 +83,8 @@ class ClassificationTrainer(BaseTrainer):
|
||||
return loader
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device)
|
||||
batch["cls"] = batch["cls"].to(self.device)
|
||||
batch['img'] = batch['img'].to(self.device)
|
||||
batch['cls'] = batch['cls'].to(self.device)
|
||||
return batch
|
||||
|
||||
def progress_string(self):
|
||||
@ -96,7 +96,7 @@ class ClassificationTrainer(BaseTrainer):
|
||||
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console)
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction='sum') / self.args.nbs
|
||||
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / self.args.nbs
|
||||
loss_items = loss.detach()
|
||||
return loss, loss_items
|
||||
|
||||
@ -112,12 +112,12 @@ class ClassificationTrainer(BaseTrainer):
|
||||
# else:
|
||||
# return keys
|
||||
|
||||
def label_loss_items(self, loss_items=None, prefix="train"):
|
||||
def label_loss_items(self, loss_items=None, prefix='train'):
|
||||
"""
|
||||
Returns a loss dict with labelled training loss items tensor
|
||||
"""
|
||||
# Not needed for classification but necessary for segmentation & detection
|
||||
keys = [f"{prefix}/{x}" for x in self.loss_names]
|
||||
keys = [f'{prefix}/{x}' for x in self.loss_names]
|
||||
if loss_items is None:
|
||||
return keys
|
||||
loss_items = [round(float(loss_items), 5)]
|
||||
@ -140,8 +140,8 @@ class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
|
||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
|
||||
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
||||
data = cfg.data or 'mnist160' # or yolo.ClassificationDataset("mnist")
|
||||
device = cfg.device if cfg.device is not None else ''
|
||||
|
||||
args = dict(model=model, data=data, device=device)
|
||||
@ -153,5 +153,5 @@ def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
train()
|
||||
|
@ -21,14 +21,14 @@ class ClassificationValidator(BaseValidator):
|
||||
self.targets = []
|
||||
|
||||
def preprocess(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
|
||||
batch["cls"] = batch["cls"].to(self.device)
|
||||
batch['img'] = batch['img'].to(self.device, non_blocking=True)
|
||||
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float()
|
||||
batch['cls'] = batch['cls'].to(self.device)
|
||||
return batch
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
self.pred.append(preds.argsort(1, descending=True)[:, :5])
|
||||
self.targets.append(batch["cls"])
|
||||
self.targets.append(batch['cls'])
|
||||
|
||||
def get_stats(self):
|
||||
self.metrics.process(self.targets, self.pred)
|
||||
@ -42,12 +42,12 @@ class ClassificationValidator(BaseValidator):
|
||||
|
||||
def print_results(self):
|
||||
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
|
||||
self.logger.info(pf % ("all", self.metrics.top1, self.metrics.top5))
|
||||
self.logger.info(pf % ('all', self.metrics.top1, self.metrics.top5))
|
||||
|
||||
|
||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
data = cfg.data or "mnist160"
|
||||
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
|
||||
data = cfg.data or 'mnist160'
|
||||
|
||||
args = dict(model=model, data=data)
|
||||
if use_python:
|
||||
@ -58,5 +58,5 @@ def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
validator(model=args['model'])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
val()
|
||||
|
Reference in New Issue
Block a user