ultralytics 8.0.58
new SimpleClass, fixes and updates (#1636)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
@ -22,11 +22,15 @@ import yaml
|
||||
|
||||
from ultralytics import __version__
|
||||
|
||||
# Constants
|
||||
# PyTorch Multi-GPU DDP Constants
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||
|
||||
# Other Constants
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[2] # YOLO
|
||||
DEFAULT_CFG_PATH = ROOT / 'yolo/cfg/default.yaml'
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
||||
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
||||
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode
|
||||
@ -92,25 +96,59 @@ HELP_MSG = \
|
||||
"""
|
||||
|
||||
# Settings
|
||||
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||
torch.set_printoptions(linewidth=320, precision=4, profile='default')
|
||||
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||||
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
||||
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
||||
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training
|
||||
|
||||
|
||||
class SimpleClass:
|
||||
"""
|
||||
Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
|
||||
access methods for easier debugging and usage.
|
||||
"""
|
||||
|
||||
def __str__(self):
|
||||
"""Return a human-readable string representation of the object."""
|
||||
attr = []
|
||||
for a in dir(self):
|
||||
v = getattr(self, a)
|
||||
if not callable(v) and not a.startswith('__'):
|
||||
if isinstance(v, SimpleClass):
|
||||
# Display only the module and class name for subclasses
|
||||
s = f'{a}: {v.__module__}.{v.__class__.__name__} object'
|
||||
else:
|
||||
s = f'{a}: {repr(v)}'
|
||||
attr.append(s)
|
||||
return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return a machine-readable string representation of the object."""
|
||||
return self.__str__()
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Custom attribute access error message with helpful information."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
|
||||
class IterableSimpleNamespace(SimpleNamespace):
|
||||
"""
|
||||
Iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops
|
||||
Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
|
||||
enables usage with dict() and for loops.
|
||||
"""
|
||||
|
||||
def __iter__(self):
|
||||
"""Return an iterator of key-value pairs from the namespace's attributes."""
|
||||
return iter(vars(self).items())
|
||||
|
||||
def __str__(self):
|
||||
"""Return a human-readable string representation of the object."""
|
||||
return '\n'.join(f'{k}={v}' for k, v in vars(self).items())
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Custom attribute access error message with helpful information."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"""
|
||||
'{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics
|
||||
@ -120,6 +158,7 @@ class IterableSimpleNamespace(SimpleNamespace):
|
||||
""")
|
||||
|
||||
def get(self, key, default=None):
|
||||
"""Return the value of the specified key if it exists; otherwise, return the default value."""
|
||||
return getattr(self, key, default)
|
||||
|
||||
|
||||
|
@ -8,7 +8,7 @@ try:
|
||||
|
||||
assert clearml.__version__ # verify package is not directory
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
except (ImportError, AssertionError):
|
||||
except (ImportError, AssertionError, AttributeError):
|
||||
clearml = None
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ try:
|
||||
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
assert comet_ml.__version__ # verify package is not directory
|
||||
except (ImportError, AssertionError):
|
||||
except (ImportError, AssertionError, AttributeError):
|
||||
comet_ml = None
|
||||
|
||||
|
||||
|
@ -239,7 +239,7 @@ def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
|
||||
if isinstance(suffix, str):
|
||||
suffix = (suffix, )
|
||||
for f in file if isinstance(file, (list, tuple)) else [file]:
|
||||
s = Path(f).suffix.lower() # file suffix
|
||||
s = Path(f).suffix.lower().strip() # file suffix
|
||||
if len(s):
|
||||
assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}'
|
||||
|
||||
@ -261,7 +261,7 @@ def check_yolov5u_filename(file: str, verbose: bool = True):
|
||||
def check_file(file, suffix='', download=True, hard=True):
|
||||
# Search/download file (if necessary) and return path
|
||||
check_suffix(file, suffix) # optional
|
||||
file = str(file) # convert to string
|
||||
file = str(file).strip() # convert to string and strip spaces
|
||||
file = check_yolov5u_filename(file) # yolov5n -> yolov5nu
|
||||
if not file or ('://' not in file and Path(file).exists()): # exists ('://' check required in Windows Python<3.10)
|
||||
return file
|
||||
|
@ -11,7 +11,7 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, TryExcept
|
||||
from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept
|
||||
|
||||
|
||||
# boxes
|
||||
@ -425,7 +425,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), na
|
||||
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
||||
|
||||
|
||||
class Metric:
|
||||
class Metric(SimpleClass):
|
||||
"""
|
||||
Class for computing evaluation metrics for YOLOv8 model.
|
||||
|
||||
@ -461,10 +461,6 @@ class Metric:
|
||||
self.ap_class_index = [] # (nc, )
|
||||
self.nc = 0
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
@property
|
||||
def ap50(self):
|
||||
"""AP@0.5 of all classes.
|
||||
@ -550,7 +546,7 @@ class Metric:
|
||||
self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results
|
||||
|
||||
|
||||
class DetMetrics:
|
||||
class DetMetrics(SimpleClass):
|
||||
"""
|
||||
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
|
||||
(mAP) of an object detection model.
|
||||
@ -585,10 +581,6 @@ class DetMetrics:
|
||||
self.box = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp, conf, pred_cls, target_cls):
|
||||
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
|
||||
names=self.names)[2:]
|
||||
@ -622,7 +614,7 @@ class DetMetrics:
|
||||
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
|
||||
|
||||
|
||||
class SegmentMetrics:
|
||||
class SegmentMetrics(SimpleClass):
|
||||
"""
|
||||
Calculates and aggregates detection and segmentation metrics over a given set of classes.
|
||||
|
||||
@ -657,10 +649,6 @@ class SegmentMetrics:
|
||||
self.seg = Metric()
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
|
||||
"""
|
||||
Processes the detection and segmentation metrics over the given set of predictions.
|
||||
@ -724,7 +712,7 @@ class SegmentMetrics:
|
||||
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
|
||||
|
||||
|
||||
class ClassifyMetrics:
|
||||
class ClassifyMetrics(SimpleClass):
|
||||
"""
|
||||
Class for computing classification metrics including top-1 and top-5 accuracy.
|
||||
|
||||
@ -747,10 +735,6 @@ class ClassifyMetrics:
|
||||
self.top5 = 0
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def process(self, targets, pred):
|
||||
# target classes and predicted classes
|
||||
pred, targets = torch.cat(pred), torch.cat(targets)
|
||||
|
@ -295,7 +295,7 @@ def plot_images(images,
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
c = classes[j]
|
||||
color = colors(c)
|
||||
c = names[c] if names else c
|
||||
c = names.get(c, c) if names else c
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||||
annotator.box_label(box, label, color=color)
|
||||
|
@ -8,6 +8,7 @@ import time
|
||||
from contextlib import contextmanager
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import thop
|
||||
@ -15,15 +16,10 @@ import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, __version__
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__
|
||||
from ultralytics.yolo.utils.checks import check_version
|
||||
|
||||
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
||||
|
||||
TORCH_1_9 = check_version(torch.__version__, '1.9.0')
|
||||
TORCH_1_11 = check_version(torch.__version__, '1.11.0')
|
||||
TORCH_1_12 = check_version(torch.__version__, '1.12.0')
|
||||
@ -49,17 +45,6 @@ def smart_inference_mode():
|
||||
return decorate
|
||||
|
||||
|
||||
def DDP_model(model):
|
||||
# Model DDP creation with checks
|
||||
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
||||
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
||||
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
||||
if TORCH_1_11:
|
||||
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
||||
else:
|
||||
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
||||
|
||||
|
||||
def select_device(device='', batch=0, newline=False, verbose=True):
|
||||
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
||||
s = f'Ultralytics YOLOv{__version__} 🚀 Python-{platform.python_version()} torch-{torch.__version__} '
|
||||
@ -141,6 +126,7 @@ def fuse_conv_and_bn(conv, bn):
|
||||
|
||||
|
||||
def fuse_deconv_and_bn(deconv, bn):
|
||||
# Fuse ConvTranspose2d() and BatchNorm2d() layers
|
||||
fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
|
||||
deconv.out_channels,
|
||||
kernel_size=deconv.kernel_size,
|
||||
@ -186,14 +172,17 @@ def model_info(model, detailed=False, verbose=True, imgsz=640):
|
||||
|
||||
|
||||
def get_num_params(model):
|
||||
# Return the total number of parameters in a YOLO model
|
||||
return sum(x.numel() for x in model.parameters())
|
||||
|
||||
|
||||
def get_num_gradients(model):
|
||||
# Return the total number of parameters with gradients in a YOLO model
|
||||
return sum(x.numel() for x in model.parameters() if x.requires_grad)
|
||||
|
||||
|
||||
def get_flops(model, imgsz=640):
|
||||
# Return a YOLO model's FLOPs
|
||||
try:
|
||||
model = de_parallel(model)
|
||||
p = next(model.parameters())
|
||||
@ -208,6 +197,7 @@ def get_flops(model, imgsz=640):
|
||||
|
||||
|
||||
def initialize_weights(model):
|
||||
# Initialize model weights to random values
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t is nn.Conv2d:
|
||||
@ -239,7 +229,7 @@ def make_divisible(x, divisor):
|
||||
|
||||
|
||||
def copy_attr(a, b, include=(), exclude=()):
|
||||
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||
# Copy attributes from 'b' to 'a', options to only include [...] and to exclude [...]
|
||||
for k, v in b.__dict__.items():
|
||||
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||
continue
|
||||
@ -322,7 +312,7 @@ class ModelEMA:
|
||||
copy_attr(self.ema, model, include, exclude)
|
||||
|
||||
|
||||
def strip_optimizer(f='best.pt', s=''):
|
||||
def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
|
||||
"""
|
||||
Strip optimizer from 'f' to finalize training, optionally save as 's'.
|
||||
|
||||
|
Reference in New Issue
Block a user