|
|
|
@ -1,18 +1,28 @@
|
|
|
|
|
import torch
|
|
|
|
|
import yaml
|
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
|
|
|
|
from ultralytics import yolo
|
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_yaml
|
|
|
|
|
from ultralytics.yolo.utils.configs import get_config
|
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
|
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
|
|
|
|
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
|
|
|
|
|
|
|
|
|
# map head: [model, trainer]
|
|
|
|
|
# map head: [model, trainer, validator, predictor]
|
|
|
|
|
MODEL_MAP = {
|
|
|
|
|
"classify": [ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer'],
|
|
|
|
|
"detect": [DetectionModel, 'yolo.TYPE.detect.DetectionTrainer'],
|
|
|
|
|
"segment": [SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer']}
|
|
|
|
|
"classify": [
|
|
|
|
|
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
|
|
|
|
|
'yolo.TYPE.classify.ClassificationPredictor'],
|
|
|
|
|
"detect": [
|
|
|
|
|
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
|
|
|
|
|
'yolo.TYPE.detect.DetectionPredictor'],
|
|
|
|
|
"segment": [
|
|
|
|
|
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
|
|
|
|
|
'yolo.TYPE.segment.SegmentationPredictor']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class YOLO:
|
|
|
|
@ -28,6 +38,8 @@ class YOLO:
|
|
|
|
|
self.type = type
|
|
|
|
|
self.ModelClass = None
|
|
|
|
|
self.TrainerClass = None
|
|
|
|
|
self.ValidatorClass = None
|
|
|
|
|
self.PredictorClass = None
|
|
|
|
|
self.model = None
|
|
|
|
|
self.trainer = None
|
|
|
|
|
self.task = None
|
|
|
|
@ -43,7 +55,9 @@ class YOLO:
|
|
|
|
|
cfg = check_yaml(cfg) # check YAML
|
|
|
|
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
|
|
|
|
cfg = yaml.safe_load(f) # model dict
|
|
|
|
|
self.ModelClass, self.TrainerClass, self.task = self._guess_model_trainer_and_task(cfg["head"][-1][-2])
|
|
|
|
|
self.task = self._guess_task_from_head(cfg["head"][-1][-2])
|
|
|
|
|
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
|
|
|
|
self.task)
|
|
|
|
|
self.model = self.ModelClass(cfg) # initialize
|
|
|
|
|
|
|
|
|
|
def load(self, weights: str):
|
|
|
|
@ -56,8 +70,8 @@ class YOLO:
|
|
|
|
|
"""
|
|
|
|
|
self.ckpt = torch.load(weights, map_location="cpu")
|
|
|
|
|
self.task = self.ckpt["train_args"]["task"]
|
|
|
|
|
_, trainer_class_literal = MODEL_MAP[self.task]
|
|
|
|
|
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
|
|
|
|
|
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
|
|
|
|
task=self.task)
|
|
|
|
|
self.model = attempt_load_weights(weights)
|
|
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
@ -70,6 +84,60 @@ class YOLO:
|
|
|
|
|
for p in self.model.parameters():
|
|
|
|
|
p.requires_grad = True
|
|
|
|
|
|
|
|
|
|
def info(self, verbose=False):
|
|
|
|
|
"""
|
|
|
|
|
Logs model info
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
verbose (bool): Controls verbosity.
|
|
|
|
|
"""
|
|
|
|
|
if not self.model:
|
|
|
|
|
LOGGER.info("model not initialized!")
|
|
|
|
|
self.model.info(verbose=verbose)
|
|
|
|
|
|
|
|
|
|
def fuse(self):
|
|
|
|
|
if not self.model:
|
|
|
|
|
LOGGER.info("model not initialized!")
|
|
|
|
|
self.model.fuse()
|
|
|
|
|
|
|
|
|
|
def predict(self, source, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Visualize prection.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
source (str): Accepts all source types accepted by yolo
|
|
|
|
|
**kwargs : Any other args accepted by the predictors. Too see all args check 'configuration' section in the docs
|
|
|
|
|
"""
|
|
|
|
|
predictor = self.PredictorClass(overrides=kwargs)
|
|
|
|
|
|
|
|
|
|
# check size type
|
|
|
|
|
sz = predictor.args.img_size
|
|
|
|
|
if type(sz) != int: # recieved listConfig
|
|
|
|
|
predictor.args.img_size = [sz[0], sz[0]] if len(sz) == 1 else [sz[0], sz[1]] # expand
|
|
|
|
|
else:
|
|
|
|
|
predictor.args.img_size = [sz, sz]
|
|
|
|
|
|
|
|
|
|
predictor.setup(model=self.model, source=source)
|
|
|
|
|
predictor()
|
|
|
|
|
|
|
|
|
|
def val(self, data, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Validate a model on a given dataset
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
data (str): The dataset to validate on. Accepts all formats accepted by yolo
|
|
|
|
|
kwargs: Any other args accepted by the validators. Too see all args check 'configuration' section in the docs
|
|
|
|
|
"""
|
|
|
|
|
if not self.model:
|
|
|
|
|
raise Exception("model not initialized!")
|
|
|
|
|
|
|
|
|
|
args = get_config(config=DEFAULT_CONFIG, overrides=kwargs)
|
|
|
|
|
args.data = data
|
|
|
|
|
args.task = self.task
|
|
|
|
|
|
|
|
|
|
validator = self.ValidatorClass(args=args)
|
|
|
|
|
validator(model=self.model)
|
|
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Trains the model on given dataset.
|
|
|
|
@ -95,22 +163,28 @@ class YOLO:
|
|
|
|
|
self.trainer.model = self.trainer.load_model(weights=self.ckpt) if self.ckpt else self.model
|
|
|
|
|
self.trainer.train()
|
|
|
|
|
|
|
|
|
|
def resume(self, task, model=None):
|
|
|
|
|
def resume(self, task=None, model=None):
|
|
|
|
|
"""
|
|
|
|
|
Resume a training task.
|
|
|
|
|
|
|
|
|
|
Resume a training task. Requires either `task` or `model`. `model` takes the higher precederence.
|
|
|
|
|
Args:
|
|
|
|
|
task (str): The task type you want to resume. Automatically finds the last run to resume if `model` is not specified.
|
|
|
|
|
model (str): [Optional] The model checkpoint to resume from. If not found, the last run of the given task type is resumed.
|
|
|
|
|
model (str): The model checkpoint to resume from. If not found, the last run of the given task type is resumed.
|
|
|
|
|
If `model` is speficied
|
|
|
|
|
"""
|
|
|
|
|
if task.lower() not in MODEL_MAP:
|
|
|
|
|
raise Exception(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
|
|
|
|
|
_, trainer_class_literal = MODEL_MAP[task.lower()]
|
|
|
|
|
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
|
|
|
|
|
if task:
|
|
|
|
|
if task.lower() not in MODEL_MAP:
|
|
|
|
|
raise Exception(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
|
|
|
|
|
else:
|
|
|
|
|
ckpt = torch.load(model, map_location="cpu")
|
|
|
|
|
task = ckpt["train_args"]["task"]
|
|
|
|
|
del ckpt
|
|
|
|
|
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
|
|
|
|
task=task.lower())
|
|
|
|
|
self.trainer = self.TrainerClass(overrides={"task": task.lower(), "resume": model if model else True})
|
|
|
|
|
self.trainer.train()
|
|
|
|
|
|
|
|
|
|
def _guess_model_trainer_and_task(self, head):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _guess_task_from_head(head):
|
|
|
|
|
task = None
|
|
|
|
|
if head.lower() in ["classify", "classifier", "cls", "fc"]:
|
|
|
|
|
task = "classify"
|
|
|
|
@ -118,13 +192,27 @@ class YOLO:
|
|
|
|
|
task = "detect"
|
|
|
|
|
if head.lower() in ["segment"]:
|
|
|
|
|
task = "segment"
|
|
|
|
|
model_class, trainer_class = MODEL_MAP[task]
|
|
|
|
|
|
|
|
|
|
if not task:
|
|
|
|
|
raise Exception(
|
|
|
|
|
"task or model not recognized! Please refer the docs at : ") # TODO: add gitHub and docs links
|
|
|
|
|
|
|
|
|
|
return task
|
|
|
|
|
|
|
|
|
|
def _guess_ops_from_task(self, task):
|
|
|
|
|
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
|
|
|
|
|
# warning: eval is unsafe. Use with caution
|
|
|
|
|
trainer_class = eval(trainer_class.replace("TYPE", f"{self.type}"))
|
|
|
|
|
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
|
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
|
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
|
|
|
|
|
|
return model_class, trainer_class, task
|
|
|
|
|
return model_class, trainer_class, validator_class, predictor_class
|
|
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
|
def __call__(self, imgs):
|
|
|
|
|
if not self.model:
|
|
|
|
|
LOGGER.info("model not initialized!")
|
|
|
|
|
return self.model(imgs)
|
|
|
|
|
|
|
|
|
|
def forward(self, imgs):
|
|
|
|
|
return self.__call__(imgs)
|
|
|
|
|