Fix Classification train logging (#157)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent d387359f74
commit e79ea1666c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -50,24 +50,24 @@ success = model.export(format="onnx")
| ------------------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- |
| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt) | 640 | 28.0 | - | - | **1.9** | **4.5** |
| [YOLOv6n](url) | 640 | 35.9 | - | - | 4.3 | 11.1 |
| **[YOLOv8n](url)** | 640 | **37.5** | - | - | 3.2 | 8.9 |
| **[YOLOv8n](url)** | 640 | **37.3** | - | - | 3.2 | 8.9 |
| | | | | | | |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt) | 640 | 37.4 | - | - | 7.2 | 16.5 |
| [YOLOv6s](url) | 640 | 43.5 | - | - | 17.2 | 44.2 |
| **[YOLOv8s](url)** | 640 | **44.7** | - | - | 11.2 | 28.8 |
| **[YOLOv8s](url)** | 640 | **44.9** | - | - | 11.2 | 28.8 |
| | | | | | | |
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m.pt) | 640 | 45.4 | - | - | 21.2 | 49.0 |
| [YOLOv6m](url) | 640 | 49.5 | - | - | 34.3 | 82.2 |
| **[YOLOv8m](url)** | 640 | **50.3** | - | - | 25.9 | 79.3 |
| **[YOLOv8m](url)** | 640 | **50.2** | - | - | 25.9 | 79.3 |
| | | | | | | |
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l.pt) | 640 | 49.0 | - | - | 46.5 | 109.1 |
| [YOLOv6l](url) | 640 | 52.5 | - | - | 58.5 | 144.0 |
| [YOLOv7](url) | 640 | 51.2 | - | - | 36.9 | 104.7 |
| **[YOLOv8l](url)** | 640 | **52.8** | - | - | 43.7 | 165.7 |
| **[YOLOv8l](url)** | 640 | **52.9** | - | - | 43.7 | 165.7 |
| | | | | | | |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x.pt) | 640 | 50.7 | - | - | 86.7 | 205.7 |
| [YOLOv7-X](url) | 640 | 52.9 | - | - | 71.3 | 189.9 |
| **[YOLOv8x](url)** | 640 | **53.7** | - | - | 68.2 | 258.5 |
| **[YOLOv8x](url)** | 640 | **53.9** | - | - | 68.2 | 258.5 |
| | | | | | | |
| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x6.pt) | 1280 | 55.0 | - | - | 140.7 | 839.2 |
| [YOLOv7-E6E](url) | 1280 | 56.8 | - | - | 151.7 | 843.2 |

@ -259,6 +259,7 @@ class ClassificationModel(BaseModel):
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
self.info()
def load(self, weights):
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
@ -292,7 +293,6 @@ class ClassificationModel(BaseModel):
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
LOGGER.info("WARNING: Deprecated in favor of attempt_load_one_weight()")
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
from ultralytics.yolo.utils.downloads import attempt_download

@ -33,7 +33,7 @@ resume: False # resume training from last checkpoint
overlap_mask: True # masks should overlap during training
mask_ratio: 4 # mask downsample ratio
# Classification
dropout: False # use dropout regularization
dropout: 0.0 # use dropout regularization
# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True # validate/test during training

@ -11,7 +11,9 @@ import uuid
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
import torch
import yaml
# Constants
@ -57,8 +59,8 @@ HELP_MSG = \
"""
# Settings
# torch.set_printoptions(linewidth=320, precision=5, profile='long')
# np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads

@ -565,14 +565,8 @@ class SegmentMetrics:
@property
def keys(self):
return [
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP50(B)",
"metrics/mAP50-95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP50(M)",
"metrics/mAP50-95(M)"]
"metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)",
"metrics/precision(M)", "metrics/recall(M)", "metrics/mAP50(M)", "metrics/mAP50-95(M)"]
def mean_results(self):
return self.metric_box.mean_results() + self.metric_mask.mean_results()
@ -603,7 +597,10 @@ class ClassifyMetrics:
self.top1 = 0
self.top5 = 0
def process(self, correct):
def process(self, targets, pred):
# target classes and predicted classes
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
@ -617,4 +614,4 @@ class ClassifyMetrics:
@property
def keys(self):
return ["top1", "top5"]
return ["metrics/accuracy_top1", "metrics/accuracy_top5"]

@ -2,7 +2,7 @@ import hydra
import torch
import torchvision
from ultralytics.nn.tasks import ClassificationModel, attempt_load_weights
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
@ -20,8 +20,18 @@ class ClassificationTrainer(BaseTrainer):
def set_model_attributes(self):
self.model.names = self.data["names"]
def get_model(self, cfg=None, weights=None):
def get_model(self, cfg=None, weights=None, verbose=True):
model = ClassificationModel(cfg, nc=self.data["nc"])
pretrained = False
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
if weights:
model.load(weights)
@ -43,7 +53,7 @@ class ClassificationTrainer(BaseTrainer):
model = str(self.model)
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
if model.endswith(".pt"):
self.model = attempt_load_weights(model, device='cpu')
self.model, _ = attempt_load_one_weight(model, device='cpu')
elif model.endswith(".yaml"):
self.model = self.get_model(cfg=model)
elif model in torchvision.models.__dict__:
@ -54,10 +64,11 @@ class ClassificationTrainer(BaseTrainer):
return # dont return ckpt. Classification doesn't support resume
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
batch_size=batch_size if mode == "train" else (batch_size * 2),
augment=mode == "train",
rank=rank)
def preprocess_batch(self, batch):
@ -66,15 +77,41 @@ class ClassificationTrainer(BaseTrainer):
return batch
def progress_string(self):
return ('\n' + '%11s' *
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def get_validator(self):
self.loss_names = ['loss']
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console)
def criterion(self, preds, batch):
loss = torch.nn.functional.cross_entropy(preds, batch["cls"])
return loss, loss
loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction='sum') / self.args.nbs
loss_items = loss.detach()
return loss, loss_items
# def label_loss_items(self, loss_items=None, prefix="train"):
# """
# Returns a loss dict with labelled training loss items tensor
# """
# # Not needed for classification but necessary for segmentation & detection
# keys = [f"{prefix}/{x}" for x in self.loss_names]
# if loss_items is not None:
# loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
# return dict(zip(keys, loss_items))
# else:
# return keys
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is not None:
loss_items = [round(float(loss_items), 5)]
return dict(zip(keys, loss_items))
else:
return keys
def resume_training(self, ckpt):
pass
@ -86,12 +123,16 @@ class ClassificationTrainer(BaseTrainer):
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.model = cfg.model or "yolov8n-cls.yaml" # or "resnet18"
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
# trainer = ClassificationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**cfg)
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
cfg.lr0 = 0.1
cfg.weight_decay = 5e-5
cfg.label_smoothing = 0.1
cfg.warmup_epochs = 0.0
trainer = ClassificationTrainer(cfg)
trainer.train()
# from ultralytics import YOLO
# model = YOLO(cfg.model)
# model.train(**cfg)
if __name__ == "__main__":

@ -1,5 +1,4 @@
import hydra
import torch
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
@ -13,8 +12,12 @@ class ClassificationValidator(BaseValidator):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.metrics = ClassifyMetrics()
def get_desc(self):
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc')
def init_metrics(self, model):
self.correct = torch.tensor([], device=next(model.parameters()).device)
self.pred = []
self.targets = []
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
@ -23,17 +26,20 @@ class ClassificationValidator(BaseValidator):
return batch
def update_metrics(self, preds, batch):
targets = batch["cls"]
correct_in_batch = (targets[:, None] == preds).float()
self.correct = torch.cat((self.correct, correct_in_batch))
self.pred.append(preds.argsort(1, descending=True)[:, :5])
self.targets.append(batch["cls"])
def get_stats(self):
self.metrics.process(self.correct)
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def get_dataloader(self, dataset_path, batch_size):
return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size)
def print_results(self):
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
self.logger.info(pf % ("all", self.metrics.top1, self.metrics.top5))
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def val(cfg):

Loading…
Cancel
Save