`default.yaml` type comments (#3237)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>single_channel
parent
21df296425
commit
e78fb683f4
@ -1,117 +1,117 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
task: detect # YOLO task, i.e. detect, segment, classify, pose
|
||||
mode: train # YOLO mode, i.e. train, val, predict, export, track, benchmark
|
||||
task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
|
||||
mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: # path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: # path to data file, i.e. coco128.yaml
|
||||
epochs: 100 # number of epochs to train for
|
||||
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # size of input images as integer or w,h
|
||||
save: True # save train checkpoints and predict results
|
||||
save_period: -1 # Save checkpoint every x epochs (disabled if < 1)
|
||||
cache: False # True/ram, disk or False. Use cache for data loading
|
||||
device: # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # number of worker threads for data loading (per RANK if DDP)
|
||||
project: # project name
|
||||
name: # experiment name, results saved to 'project/name' directory
|
||||
exist_ok: False # whether to overwrite existing experiment
|
||||
pretrained: False # whether to use a pretrained model
|
||||
optimizer: auto # optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
||||
verbose: True # whether to print verbose output
|
||||
seed: 0 # random seed for reproducibility
|
||||
deterministic: True # whether to enable deterministic mode
|
||||
single_cls: False # train multi-class data as single-class
|
||||
rect: False # rectangular training if mode='train' or rectangular validation if mode='val'
|
||||
cos_lr: False # use cosine learning rate scheduler
|
||||
model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: # (str, optional) path to data file, i.e. coco128.yaml
|
||||
epochs: 100 # (int) number of epochs to train for
|
||||
patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # (int) number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # (int) size of input images as integer or w,h
|
||||
save: True # (bool) save train checkpoints and predict results
|
||||
save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
|
||||
cache: False # (bool) True/ram, disk or False. Use cache for data loading
|
||||
device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
|
||||
project: # (str, optional) project name
|
||||
name: # (str, optional) experiment name, results saved to 'project/name' directory
|
||||
exist_ok: False # (bool) whether to overwrite existing experiment
|
||||
pretrained: False # (bool) whether to use a pretrained model
|
||||
optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
|
||||
verbose: True # (bool) whether to print verbose output
|
||||
seed: 0 # (int) random seed for reproducibility
|
||||
deterministic: True # (bool) whether to enable deterministic mode
|
||||
single_cls: False # (bool) train multi-class data as single-class
|
||||
rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
|
||||
cos_lr: False # (bool) use cosine learning rate scheduler
|
||||
close_mosaic: 0 # (int) disable mosaic augmentation for final epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
amp: True # Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||||
fraction: 1.0 # dataset fraction to train on (default is 1.0, all images in train set)
|
||||
profile: False # profile ONNX and TensorRT speeds during training for loggers
|
||||
resume: False # (bool) resume training from last checkpoint
|
||||
amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
|
||||
fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
|
||||
profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
|
||||
# Segmentation
|
||||
overlap_mask: True # masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # mask downsample ratio (segment train only)
|
||||
overlap_mask: True # (bool) masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # (int) mask downsample ratio (segment train only)
|
||||
# Classification
|
||||
dropout: 0.0 # use dropout regularization (classify train only)
|
||||
dropout: 0.0 # (float) use dropout regularization (classify train only)
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
val: True # validate/test during training
|
||||
split: val # dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
||||
save_json: False # save results to JSON file
|
||||
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
||||
conf: # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # maximum number of detections per image
|
||||
half: False # use half precision (FP16)
|
||||
dnn: False # use OpenCV DNN for ONNX inference
|
||||
plots: True # save plots during train/val
|
||||
val: True # (bool) validate/test during training
|
||||
split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
|
||||
save_json: False # (bool) save results to JSON file
|
||||
save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
|
||||
conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # (int) maximum number of detections per image
|
||||
half: False # (bool) use half precision (FP16)
|
||||
dnn: False # (bool) use OpenCV DNN for ONNX inference
|
||||
plots: True # (bool) save plots during train/val
|
||||
|
||||
# Prediction settings --------------------------------------------------------------------------------------------------
|
||||
source: # source directory for images or videos
|
||||
show: False # show results if possible
|
||||
save_txt: False # save results as .txt file
|
||||
save_conf: False # save results with confidence scores
|
||||
save_crop: False # save cropped images with results
|
||||
show_labels: True # show object labels in plots
|
||||
show_conf: True # show object confidence scores in plots
|
||||
vid_stride: 1 # video frame-rate stride
|
||||
line_width: # line width of the bounding boxes
|
||||
visualize: False # visualize model features
|
||||
augment: False # apply image augmentation to prediction sources
|
||||
agnostic_nms: False # class-agnostic NMS
|
||||
classes: # filter results by class, i.e. class=0, or class=[0,2,3]
|
||||
retina_masks: False # use high-resolution segmentation masks
|
||||
boxes: True # Show boxes in segmentation predictions
|
||||
source: # (str, optional) source directory for images or videos
|
||||
show: False # (bool) show results if possible
|
||||
save_txt: False # (bool) save results as .txt file
|
||||
save_conf: False # (bool) save results with confidence scores
|
||||
save_crop: False # (bool) save cropped images with results
|
||||
show_labels: True # (bool) show object labels in plots
|
||||
show_conf: True # (bool) show object confidence scores in plots
|
||||
vid_stride: 1 # (int) video frame-rate stride
|
||||
line_width: # (int, optional) line width of the bounding boxes, auto if missing
|
||||
visualize: False # (bool) visualize model features
|
||||
augment: False # (bool) apply image augmentation to prediction sources
|
||||
agnostic_nms: False # (bool) class-agnostic NMS
|
||||
classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
|
||||
retina_masks: False # (bool) use high-resolution segmentation masks
|
||||
boxes: True # (bool) Show boxes in segmentation predictions
|
||||
|
||||
# Export settings ------------------------------------------------------------------------------------------------------
|
||||
format: torchscript # format to export to
|
||||
keras: False # use Keras
|
||||
optimize: False # TorchScript: optimize for mobile
|
||||
int8: False # CoreML/TF INT8 quantization
|
||||
dynamic: False # ONNX/TF/TensorRT: dynamic axes
|
||||
simplify: False # ONNX: simplify model
|
||||
opset: # ONNX: opset version (optional)
|
||||
workspace: 4 # TensorRT: workspace size (GB)
|
||||
nms: False # CoreML: add NMS
|
||||
format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
|
||||
keras: False # (bool) use Kera=s
|
||||
optimize: False # (bool) TorchScript: optimize for mobile
|
||||
int8: False # (bool) CoreML/TF INT8 quantization
|
||||
dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
|
||||
simplify: False # (bool) ONNX: simplify model
|
||||
opset: # (int, optional) ONNX: opset version
|
||||
workspace: 4 # (int) TensorRT: workspace size (GB)
|
||||
nms: False # (bool) CoreML: add NMS
|
||||
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.01 # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
||||
warmup_momentum: 0.8 # warmup initial momentum
|
||||
warmup_bias_lr: 0.1 # warmup initial bias lr
|
||||
box: 7.5 # box loss gain
|
||||
cls: 0.5 # cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # dfl loss gain
|
||||
pose: 12.0 # pose loss gain
|
||||
kobj: 1.0 # keypoint obj loss gain
|
||||
label_smoothing: 0.0 # label smoothing (fraction)
|
||||
nbs: 64 # nominal batch size
|
||||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # image rotation (+/- deg)
|
||||
translate: 0.1 # image translation (+/- fraction)
|
||||
scale: 0.5 # image scale (+/- gain)
|
||||
shear: 0.0 # image shear (+/- deg)
|
||||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # image flip up-down (probability)
|
||||
fliplr: 0.5 # image flip left-right (probability)
|
||||
mosaic: 1.0 # image mosaic (probability)
|
||||
mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # (float) final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # (float) SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
|
||||
warmup_momentum: 0.8 # (float) warmup initial momentum
|
||||
warmup_bias_lr: 0.1 # (float) warmup initial bias lr
|
||||
box: 7.5 # (float) box loss gain
|
||||
cls: 0.5 # (float) cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # (float) dfl loss gain
|
||||
pose: 12.0 # (float) pose loss gain
|
||||
kobj: 1.0 # (float) keypoint obj loss gain
|
||||
label_smoothing: 0.0 # (float) label smoothing (fraction)
|
||||
nbs: 64 # (int) nominal batch size
|
||||
hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # (float) image rotation (+/- deg)
|
||||
translate: 0.1 # (float) image translation (+/- fraction)
|
||||
scale: 0.5 # (float) image scale (+/- gain)
|
||||
shear: 0.0 # (float) image shear (+/- deg)
|
||||
perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # (float) image flip up-down (probability)
|
||||
fliplr: 0.5 # (float) image flip left-right (probability)
|
||||
mosaic: 1.0 # (float) image mosaic (probability)
|
||||
mixup: 0.0 # (float) image mixup (probability)
|
||||
copy_paste: 0.0 # (float) segment copy-paste (probability)
|
||||
|
||||
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
||||
cfg: # for overriding defaults.yaml
|
||||
cfg: # (str, optional) for overriding defaults.yaml
|
||||
|
||||
# Debug, do not modify -------------------------------------------------------------------------------------------------
|
||||
v5loader: False # use legacy YOLOv5 dataloader
|
||||
v5loader: False # (bool) use legacy YOLOv5 dataloader (deprecated)
|
||||
|
||||
# Tracker settings ------------------------------------------------------------------------------------------------------
|
||||
tracker: botsort.yaml # tracker type, ['botsort.yaml', 'bytetrack.yaml']
|
||||
tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|
||||
|
Loading…
Reference in new issue