Predictor support (#65)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent 479992093c
commit e6737f1207
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 KiB

@ -39,9 +39,9 @@ def cli(cfg):
module_function = module_file.train module_function = module_file.train
elif cfg.mode.lower() == "val": elif cfg.mode.lower() == "val":
module_function = module_file.val module_function = module_file.val
elif cfg.mode.lower() == "infer": elif cfg.mode.lower() == "predict":
module_function = module_file.infer module_function = module_file.predict
if not module_function: if not module_function:
raise Exception("mode not recognized. Choices are `'train', 'val', 'infer'`") raise Exception("mode not recognized. Choices are `'train', 'val', 'predict'`")
module_function(cfg) module_function(cfg)

@ -459,7 +459,7 @@ class LetterBox:
self.stride = stride self.stride = stride
def __call__(self, labels={}, image=None): def __call__(self, labels={}, image=None):
img = image or labels["img"] img = labels.get("img") if image is None else image
shape = img.shape[:2] # current shape [height, width] shape = img.shape[:2] # current shape [height, width]
new_shape = labels.pop("rect_shape", self.new_shape) new_shape = labels.pop("rect_shape", self.new_shape)
if isinstance(new_shape, int): if isinstance(new_shape, int):
@ -491,10 +491,13 @@ class LetterBox:
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=(114, 114, 114)) # add border value=(114, 114, 114)) # add border
labels = self._update_labels(labels, ratio, dw, dh) if len(labels):
labels["img"] = img labels = self._update_labels(labels, ratio, dw, dh)
labels["resized_shape"] = new_shape labels["img"] = img
return labels labels["resized_shape"] = new_shape
return labels
else:
return img
def _update_labels(self, labels, ratio, padw, padh): def _update_labels(self, labels, ratio, padw, padh):
"""Update labels""" """Update labels"""

@ -0,0 +1,254 @@
import glob
import math
import os
import time
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import torch
from ultralytics.yolo.data.augment import LetterBox
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.yolo.utils import LOGGER, is_colab, is_kaggle, ops
from ultralytics.yolo.utils.checks import check_requirements
class LoadStreams:
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.mode = 'stream'
self.img_size = img_size
self.stride = stride
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f'{i + 1}/{n}: {s}... '
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
import pafy
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0:
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
cap = cv2.VideoCapture(s)
assert cap.isOpened(), f'{st}Failed to open {s}'
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
_, self.imgs[i] = cap.read() # guarantee first frame
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
self.threads[i].start()
LOGGER.info('') # newline
# check for common shapes
s = np.stack([LetterBox(img_size, auto, stride=stride)(image=x).shape for x in self.imgs])
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
self.auto = auto and self.rect
self.transforms = transforms # optional
if not self.rect:
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
def update(self, i, cap, stream):
# Read stream `i` frames in daemon thread
n, f = 0, self.frames[i] # frame number, frame array
while cap.isOpened() and n < f:
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if success:
self.imgs[i] = im
else:
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
self.imgs[i] = np.zeros_like(self.imgs[i])
cap.open(stream) # re-open stream if signal was lost
time.sleep(0.0) # wait time
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
im0 = self.imgs.copy()
if self.transforms:
im = np.stack([self.transforms(x) for x in im0]) # transforms
else:
im = np.stack([LetterBox(self.img_size, self.auto, stride=self.stride)(image=x) for x in im0])
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
im = np.ascontiguousarray(im) # contiguous
return self.sources, im, im0, None, ''
def __len__(self):
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
# YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
# source = [screen_number left top width height] (pixels)
check_requirements('mss')
import mss
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.img_size = img_size
self.stride = stride
self.transforms = transforms
self.auto = auto
self.mode = 'stream'
self.frame = 0
self.sct = mss.mss()
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor["top"] if top is None else (monitor["top"] + top)
self.left = monitor["left"] if left is None else (monitor["left"] + left)
self.width = width or monitor["width"]
self.height = height or monitor["height"]
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
def __iter__(self):
return self
def __next__(self):
# mss screen capture: get raw pixels from the screen as np array
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.img_size, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
self.frame += 1
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
class LoadImages:
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
path = Path(path).read_text().rsplit()
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
p = str(Path(p).resolve())
if '*' in p:
files.extend(sorted(glob.glob(p, recursive=True))) # glob
elif os.path.isdir(p):
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
elif os.path.isfile(p):
files.append(p) # files
else:
raise FileNotFoundError(f'{p} does not exist')
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.img_size = img_size
self.stride = stride
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
self.auto = auto
self.transforms = transforms # optional
self.vid_stride = vid_stride # video frame-rate stride
if any(videos):
self._new_video(videos[0]) # new video
else:
self.cap = None
assert self.nf > 0, f'No images or videos found in {p}. ' \
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
for _ in range(self.vid_stride):
self.cap.grab()
ret_val, im0 = self.cap.retrieve()
while not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
path = self.files[self.count]
self._new_video(path)
ret_val, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
assert im0 is not None, f'Image Not Found {path}'
s = f'image {self.count}/{self.nf} {path}: '
if self.transforms:
im = self.transforms(im0) # transforms
else:
im = LetterBox(self.img_size, self.auto, stride=self.stride)(image=im0)
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im) # contiguous
return path, im, im0, self.cap, s
def _new_video(self, path):
# Create a new video capture object
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
def _cv2_rotate(self, im):
# Rotate a cv2 video manually
if self.orientation == 0:
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
elif self.orientation == 180:
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif self.orientation == 90:
return cv2.rotate(im, cv2.ROTATE_180)
return im
def __len__(self):
return self.nf # number of files

@ -0,0 +1,201 @@
# predictor engine by Ultralytics
"""
Run prection on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo task=... mode=predict model=s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ yolo task=... mode=predict --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import platform
from pathlib import Path
import cv2
import torch
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS, check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr, ops
from ultralytics.yolo.utils.checks import check_file, check_imshow
from ultralytics.yolo.utils.configs import get_config
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
from ultralytics.yolo.utils.plotting import Annotator
from ultralytics.yolo.utils.torch_utils import check_img_size, select_device, smart_inference_mode
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class BasePredictor:
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
self.args = get_config(config, overrides)
self.save_dir = increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
self.done_setup = False
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.device = None
self.dataset = None
self.vid_path, self.vid_writer = None, None
self.view_img = None
self.annotator = None
self.data_path = None
def preprocess(self, img):
pass
def get_annotator(self, img):
raise NotImplementedError("get_annotator function needs to be implemented")
def write_results(self, pred, batch, print_string):
raise NotImplementedError("print_results function needs to be implemented")
def postprocess(self, preds, img, orig_img):
return preds
def setup(self, source=None, model=None):
# source
source = str(source or self.args.source)
self.save_img = not self.args.nosave and not source.endswith('.txt')
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# data
if self.data:
if self.data.endswith(".yaml"):
self.data = check_dataset_yaml(self.data)
else:
self.data = check_dataset(self.data)
# model
device = select_device(self.args.device)
model = model or self.args.model
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half) # NOTE: not passing data
stride, pt = model.stride, model.pt
imgsz = check_img_size(self.args.img_size, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
self.view_img = check_imshow(warn=True)
self.dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
bs = len(self.dataset)
elif screenshot:
self.dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
self.dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
self.vid_path, self.vid_writer = [None] * bs, [None] * bs
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
self.model = model
self.webcam = webcam
self.screenshot = screenshot
self.imgsz = imgsz
self.done_setup = True
self.device = device
return model
@smart_inference_mode()
def __call__(self, source=None, model=None):
if not self.done_setup:
model = self.setup(source, model)
else:
model = self.model
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile())
for batch in self.dataset:
path, im, im0s, vid_cap, s = batch
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
with self.dt[0]:
im = self.preprocess(im)
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with self.dt[1]:
preds = model(im, augment=self.args.augment, visualize=visualize)
# postprocess
with self.dt[2]:
preds = self.postprocess(preds, im, im0s)
for i in range(len(im)):
if self.webcam:
path, im0s = path[i], im0s[i]
p = Path(path)
s += self.write_results(i, preds, (p, im, im0s))
if self.args.view_img:
self.show(p)
if self.save_img:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image
LOGGER.info(
f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape {(1, 3, *self.imgsz)}'
% t)
if self.args.save_txt or self.save_img:
s = f"\n{len(list(self.save_dir.glob('labels/*.txt')))} labels saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
def show(self, p):
im0 = self.annotator.result()
if platform.system() == 'Linux' and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
def save_preds(self, vid_cap, idx, save_path):
im0 = self.annotator.result()
# save imgs
if self.dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if self.vid_path[idx] != save_path: # new video
self.vid_path[idx] = save_path
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
self.vid_writer[idx].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
self.vid_writer[idx].write(im0)

@ -15,7 +15,7 @@ import torch
import torch.distributed as dist import torch.distributed as dist
import torch.multiprocessing as mp import torch.multiprocessing as mp
import torch.nn as nn import torch.nn as nn
from omegaconf import DictConfig, OmegaConf from omegaconf import OmegaConf
from torch.cuda import amp from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import lr_scheduler from torch.optim import lr_scheduler
@ -26,7 +26,9 @@ import ultralytics.yolo.utils.callbacks as callbacks
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr
from ultralytics.yolo.utils.checks import check_file, print_args from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.configs import get_config
from ultralytics.yolo.utils.files import get_latest_run, increment_path, save_yaml from ultralytics.yolo.utils.files import get_latest_run, increment_path, save_yaml
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml" DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
@ -36,7 +38,7 @@ RANK = int(os.getenv('RANK', -1))
class BaseTrainer: class BaseTrainer:
def __init__(self, config=DEFAULT_CONFIG, overrides={}): def __init__(self, config=DEFAULT_CONFIG, overrides={}):
self.args = self._get_config(config, overrides) self.args = get_config(config, overrides)
self.check_resume() self.check_resume()
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
@ -84,25 +86,6 @@ class BaseTrainer:
self.add_callback(callback, func) self.add_callback(callback, func)
callbacks.add_integration_callbacks(self) callbacks.add_integration_callbacks(self)
def _get_config(self, config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
"""
Accepts yaml file name or DictConfig containing experiment configuration.
Returns training args namespace
:param config: Optional file name or DictConfig object
"""
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
elif isinstance(config, Dict):
config = OmegaConf.create(config)
# override
if isinstance(overrides, str):
overrides = OmegaConf.load(overrides)
elif isinstance(overrides, Dict):
overrides = OmegaConf.create(overrides)
return OmegaConf.merge(config, overrides)
def add_callback(self, onevent: str, callback): def add_callback(self, onevent: str, callback):
""" """
appends the given callback appends the given callback

@ -46,8 +46,8 @@ class BaseValidator:
self.args.half &= self.device.type != 'cpu' self.args.half &= self.device.type != 'cpu'
model = model.half() if self.args.half else model.float() model = model.half() if self.args.half else model.float()
self.model = model self.model = model
loss = torch.zeros_like(trainer.loss_items, device=trainer.device) self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
else: # TODO: handle this when detectMultiBackend is supported else:
assert model is not None, "Either trainer or model is needed for validation" assert model is not None, "Either trainer or model is needed for validation"
self.device = select_device(self.args.device, self.args.batch_size) self.device = select_device(self.args.device, self.args.batch_size)
self.args.half &= self.device.type != 'cpu' self.args.half &= self.device.type != 'cpu'
@ -90,13 +90,11 @@ class BaseValidator:
# inference # inference
with dt[1]: with dt[1]:
preds = model(batch["img"]) preds = model(batch["img"])
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss # loss
with dt[2]: with dt[2]:
if self.training: if self.training:
loss += trainer.criterion(preds, batch)[1] self.loss += trainer.criterion(preds, batch)[1]
# pre-process predictions # pre-process predictions
with dt[3]: with dt[3]:
@ -123,7 +121,7 @@ class BaseValidator:
model.float() model.float()
# TODO: implement save json # TODO: implement save json
return stats | trainer.label_loss_items(loss.cpu() / len(self.dataloader), prefix="val") \ return stats | trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats if self.training else stats
def get_dataloader(self, dataset_path, batch_size): def get_dataloader(self, dataset_path, batch_size):

@ -6,6 +6,8 @@ import sys
import threading import threading
from pathlib import Path from pathlib import Path
import IPython
# Constants # Constants
FILE = Path(__file__).resolve() FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLO ROOT = FILE.parents[2] # YOLO
@ -29,6 +31,23 @@ def is_kaggle():
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
def is_notebook():
# Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
ipython_type = str(type(IPython.get_ipython()))
return 'colab' in ipython_type or 'zmqshell' in ipython_type
def is_docker() -> bool:
"""Check if the process runs inside a docker container."""
if Path("/.dockerenv").exists():
return True
try: # check if docker is in control groups
with open("/proc/self/cgroup") as file:
return any("docker" in line for line in file)
except OSError:
return False
def is_writeable(dir, test=False): def is_writeable(dir, test=False):
# Return True if directory has write permissions, test opening a file with write permissions if test=True # Return True if directory has write permissions, test opening a file with write permissions if test=True
if not test: if not test:

@ -6,10 +6,13 @@ from pathlib import Path
from subprocess import check_output from subprocess import check_output
from typing import Optional from typing import Optional
import cv2
import numpy as np
import pkg_resources as pkg import pkg_resources as pkg
import torch import torch
from ultralytics.yolo.utils import AUTOINSTALL, FONT, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, emojis from ultralytics.yolo.utils import (AUTOINSTALL, FONT, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, emojis,
is_docker, is_notebook)
def is_ascii(s=''): def is_ascii(s=''):
@ -131,6 +134,22 @@ def check_yaml(file, suffix=('.yaml', '.yml')):
return check_file(file, suffix) return check_file(file, suffix)
def check_imshow(warn=False):
# Check if environment supports image displays
try:
assert not is_notebook()
assert not is_docker()
cv2.imshow('test', np.zeros((1, 1, 3)))
cv2.waitKey(1)
cv2.destroyAllWindows()
cv2.waitKey(1)
return True
except Exception as e:
if warn:
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
return False
def git_describe(path=ROOT): # path must be a directory def git_describe(path=ROOT): # path must be a directory
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
try: try:

@ -0,0 +1,23 @@
from pathlib import Path
from typing import Dict, Union
from omegaconf import DictConfig, OmegaConf
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
"""
Accepts yaml file name or DictConfig containing experiment configuration.
Returns training args namespace
:param config: Optional file name or DictConfig object
"""
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
elif isinstance(config, Dict):
config = OmegaConf.create(config)
# override
if isinstance(overrides, str):
overrides = OmegaConf.load(overrides)
elif isinstance(overrides, Dict):
overrides = OmegaConf.create(overrides)
return OmegaConf.merge(config, overrides)

@ -46,7 +46,22 @@ max_det: 300
half: True half: True
dnn: False # use OpenCV DNN for ONNX inference dnn: False # use OpenCV DNN for ONNX inference
plots: False plots: False
# Prediction settings:
source: "ultralytics/assets/"
view_img: False
save_txt: False save_txt: False
save_conf: False
save_crop: False
hide_labels: False # hide labels
hide_conf: False
vid_stride: 1 # video frame-rate stride
line_thickness: 3 # bounding box thickness (pixels)
update: False # Update all models
visualize: False
augment: False
agnostic_nms: False # class-agnostic NMS
retina_masks: False
# Hyperparameters ------------------------------------------------------------------------------------------------------ # Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)

@ -1,7 +1,6 @@
import contextlib import contextlib
import torchvision import torchvision
import yaml
from ultralytics.yolo.utils.downloads import attempt_download from ultralytics.yolo.utils.downloads import attempt_download
from ultralytics.yolo.utils.modeling.modules import * from ultralytics.yolo.utils.modeling.modules import *

@ -1,5 +1,6 @@
import contextlib import contextlib
import math import math
import re
import time import time
import cv2 import cv2
@ -374,3 +375,75 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False):
if upsample: if upsample:
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
return masks.gt_(0.5) return masks.gt_(0.5)
def process_mask_native(protos, masks_in, bboxes, shape):
"""
Crop after upsample.
protos: [mask_dim, mask_h, mask_w]
masks_in: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape: input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(mh - pad[1]), int(mw - pad[0])
masks = masks[:, top:bottom, left:right]
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
masks = crop_mask(masks, bboxes) # CHW
return masks.gt_(0.5)
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
segments[:, 0] -= pad[0] # x padding
segments[:, 1] -= pad[1] # y padding
segments /= gain
clip_segments(segments, img0_shape)
if normalize:
segments[:, 0] /= img0_shape[1] # width
segments[:, 1] /= img0_shape[0] # height
return segments
def masks2segments(masks, strategy='largest'):
# Convert masks(n,160,160) into segments(n,xy)
segments = []
for x in masks.int().cpu().numpy().astype('uint8'):
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if c:
if strategy == 'concat': # concatenate all segments
c = np.concatenate([x.reshape(-1, 2) for x in c])
elif strategy == 'largest': # select largest segment
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
else:
c = np.zeros((0, 2)) # no segments found
segments.append(c.astype('float32'))
return segments
def clip_segments(segments, shape):
# Clip segments (xy1,xy2,...) to image shape (height, width)
if isinstance(segments, torch.Tensor): # faster individually
segments[:, 0].clamp_(0, shape[1]) # x
segments[:, 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
def clean_str(s):
# Cleans a string by replacing special characters with underscore _
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)

@ -36,6 +36,14 @@ def torch_distributed_zero_first(local_rank: int):
dist.barrier(device_ids=[0]) dist.barrier(device_ids=[0])
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
def decorate(fn):
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
return decorate
def DDP_model(model): def DDP_model(model):
# Model DDP creation with checks # Model DDP creation with checks
assert not check_version(torch.__version__, '1.12.0', pinned=True), \ assert not check_version(torch.__version__, '1.12.0', pinned=True), \
@ -192,14 +200,6 @@ def copy_attr(a, b, include=(), exclude=()):
setattr(a, k, v) setattr(a, k, v)
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
def decorate(fn):
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
return decorate
def intersect_state_dicts(da, db, exclude=()): def intersect_state_dicts(da, db, exclude=()):
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}

@ -1,4 +1,3 @@
from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = ["train"]

@ -0,0 +1,68 @@
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class ClassificationPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, example=str(self.model.names), pil=True)
def preprocess(self, img):
img = torch.Tensor(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
return img
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.cound
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
# save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
prob = preds[idx]
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
# write
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
if self.save_img or self.args.view_img: # Add bbox to image
self.annotator.text((32, 32), text, txt_color=(255, 255, 255))
if self.args.save_txt: # Write to file
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(text + '\n')
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "squeezenet1_0"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = ClassificationPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()

@ -1,2 +1,3 @@
from ultralytics.yolo.v8.detect.predict import DetectionPredictor, predict
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train from ultralytics.yolo.v8.detect.train import DetectionTrainer, train
from ultralytics.yolo.v8.detect.val import DetectionValidator, val from ultralytics.yolo.v8.detect.val import DetectionValidator, val

@ -0,0 +1,97 @@
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class DetectionPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))
def preprocess(self, img):
img = torch.from_numpy(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
img /= 255 # 0 - 255 to 0.0 - 1.0
return img
def postprocess(self, preds, img, orig_img):
preds = ops.non_max_suppression(preds,
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det)
for i, pred in enumerate(preds):
shape = orig_img[i].shape if self.webcam else orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return preds
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
# save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
det = preds[idx]
if len(det) == 0:
return log_string
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
# write
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in reversed(det):
if self.args.save_txt: # Write to file
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_img or self.args.save_crop or self.args.view_img: # Add bbox to image
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(xyxy, label, color=colors(c, True))
if self.args.save_crop:
imc = im0.copy()
save_one_box(xyxy,
imc,
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg',
BGR=True)
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "n.pt"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = DetectionPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()

@ -63,7 +63,7 @@ class DetectionValidator(BaseValidator):
self.seen = 0 self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc) self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metric() self.metrics = Metric()
self.loss = torch.zeros(4, device=self.device) self.loss = torch.zeros(3, device=self.device)
self.jdict = [] self.jdict = []
self.stats = [] self.stats = []

@ -1,2 +1,3 @@
from ultralytics.yolo.v8.segment.predict import SegmentationPredictor, predict
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train
from ultralytics.yolo.v8.segment.val import SegmentationValidator, val from ultralytics.yolo.v8.segment.val import SegmentationValidator, val

@ -0,0 +1,115 @@
from pathlib import Path
import hydra
import torch
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ROOT, ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
from ..detect.predict import DetectionPredictor
class SegmentationPredictor(DetectionPredictor):
def postprocess(self, preds, img, orig_img):
masks = []
if len(preds) == 2: # eval
p, proto, = preds
else: # len(3) train
p, proto, _ = preds
# TODO: filter by classes
p = ops.non_max_suppression(p,
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nm=32)
for i, pred in enumerate(p):
shape = orig_img[i].shape if self.webcam else orig_img.shape
if not len(pred):
continue
if self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])) # HWC
else:
masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return (p, masks)
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
preds, masks = preds
det = preds[idx]
if len(det) == 0:
return log_string
# Segments
mask = masks[idx]
if self.args.save_txt:
segments = [
ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
for x in reversed(ops.masks2segments(mask))]
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Mask plotting
self.annotator.masks(
mask,
colors=[colors(x, True) for x in det[:, 5]],
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
255 if self.args.retina_masks else im[idx])
# Write results
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
if self.args.save_txt: # Write to file
seg = segments[j].reshape(-1) # (n,2) to (n*2)
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_img or self.args.save_crop or self.args.view_img:
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(xyxy, label, color=colors(c, True))
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
if self.args.save_crop:
imc = im0.copy()
save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{p.stem}.jpg', BGR=True)
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "n.pt"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = SegmentationPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()
Loading…
Cancel
Save