Predictor support (#65)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia
2022-12-07 10:33:10 +05:30
committed by GitHub
parent 479992093c
commit e6737f1207
22 changed files with 916 additions and 48 deletions

View File

@ -1,4 +1,3 @@
from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = ["train"]

View File

@ -0,0 +1,68 @@
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class ClassificationPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, example=str(self.model.names), pil=True)
def preprocess(self, img):
img = torch.Tensor(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
return img
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.cound
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
# save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
prob = preds[idx]
# Print results
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
# write
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
if self.save_img or self.args.view_img: # Add bbox to image
self.annotator.text((32, 32), text, txt_color=(255, 255, 255))
if self.args.save_txt: # Write to file
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(text + '\n')
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "squeezenet1_0"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = ClassificationPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()

View File

@ -1,2 +1,3 @@
from ultralytics.yolo.v8.detect.predict import DetectionPredictor, predict
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train
from ultralytics.yolo.v8.detect.val import DetectionValidator, val

View File

@ -0,0 +1,97 @@
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
class DetectionPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))
def preprocess(self, img):
img = torch.from_numpy(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
img /= 255 # 0 - 255 to 0.0 - 1.0
return img
def postprocess(self, preds, img, orig_img):
preds = ops.non_max_suppression(preds,
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det)
for i, pred in enumerate(preds):
shape = orig_img[i].shape if self.webcam else orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return preds
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
# save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
det = preds[idx]
if len(det) == 0:
return log_string
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
# write
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in reversed(det):
if self.args.save_txt: # Write to file
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_img or self.args.save_crop or self.args.view_img: # Add bbox to image
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(xyxy, label, color=colors(c, True))
if self.args.save_crop:
imc = im0.copy()
save_one_box(xyxy,
imc,
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg',
BGR=True)
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "n.pt"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = DetectionPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()

View File

@ -63,7 +63,7 @@ class DetectionValidator(BaseValidator):
self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metric()
self.loss = torch.zeros(4, device=self.device)
self.loss = torch.zeros(3, device=self.device)
self.jdict = []
self.stats = []

View File

@ -1,2 +1,3 @@
from ultralytics.yolo.v8.segment.predict import SegmentationPredictor, predict
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train
from ultralytics.yolo.v8.segment.val import SegmentationValidator, val

View File

@ -0,0 +1,115 @@
from pathlib import Path
import hydra
import torch
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import ROOT, ops
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
from ..detect.predict import DetectionPredictor
class SegmentationPredictor(DetectionPredictor):
def postprocess(self, preds, img, orig_img):
masks = []
if len(preds) == 2: # eval
p, proto, = preds
else: # len(3) train
p, proto, _ = preds
# TODO: filter by classes
p = ops.non_max_suppression(p,
self.args.conf_thres,
self.args.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nm=32)
for i, pred in enumerate(p):
shape = orig_img[i].shape if self.webcam else orig_img.shape
if not len(pred):
continue
if self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])) # HWC
else:
masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return (p, masks)
def write_results(self, idx, preds, batch):
p, im, im0 = batch
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
preds, masks = preds
det = preds[idx]
if len(det) == 0:
return log_string
# Segments
mask = masks[idx]
if self.args.save_txt:
segments = [
ops.scale_segments(im0.shape if self.arg.retina_masks else im.shape[2:], x, im0.shape, normalize=True)
for x in reversed(ops.masks2segments(mask))]
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Mask plotting
self.annotator.masks(
mask,
colors=[colors(x, True) for x in det[:, 5]],
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
255 if self.args.retina_masks else im[idx])
# Write results
for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
if self.args.save_txt: # Write to file
seg = segments[j].reshape(-1) # (n,2) to (n*2)
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_img or self.args.save_crop or self.args.view_img:
c = int(cls) # integer class
label = None if self.args.hide_labels else (
self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}')
self.annotator.box_label(xyxy, label, color=colors(c, True))
# annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
if self.args.save_crop:
imc = im0.copy()
save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{p.stem}.jpg', BGR=True)
return log_string
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def predict(cfg):
cfg.model = cfg.model or "n.pt"
sz = cfg.img_size
if type(sz) != int: # recieved listConfig
cfg.img_size = [sz[0], sz[0]] if len(cfg.img_size) == 1 else [sz[0], sz[1]] # expand
else:
cfg.img_size = [sz, sz]
predictor = SegmentationPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()