|
|
|
@ -8,8 +8,7 @@ import torch.nn.functional as F
|
|
|
|
|
from ultralytics.yolo.data import build_dataloader
|
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
|
from ultralytics.yolo.utils import ops
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
|
from ultralytics.yolo.utils.checks import check_requirements
|
|
|
|
|
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
|
|
|
|
|
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
|
|
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel
|
|
|
|
@ -26,10 +25,7 @@ class SegmentationValidator(DetectionValidator):
|
|
|
|
|
self.process = ops.process_mask_upsample # more accurate
|
|
|
|
|
else:
|
|
|
|
|
self.process = ops.process_mask # faster
|
|
|
|
|
self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None
|
|
|
|
|
self.is_coco = False
|
|
|
|
|
self.class_map = None
|
|
|
|
|
self.targets = None
|
|
|
|
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots)
|
|
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
|
|
|
@ -46,29 +42,18 @@ class SegmentationValidator(DetectionValidator):
|
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
def init_metrics(self, model):
|
|
|
|
|
if self.training:
|
|
|
|
|
head = de_parallel(model).model[-1]
|
|
|
|
|
else:
|
|
|
|
|
head = de_parallel(model).model.model[-1]
|
|
|
|
|
|
|
|
|
|
head = model.model[-1] if self.training else model.model.model[-1]
|
|
|
|
|
if self.data:
|
|
|
|
|
self.is_coco = isinstance(self.data.get('val'),
|
|
|
|
|
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
|
|
|
|
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
|
|
|
|
self.nm = head.nm if hasattr(head, "nm") else 32
|
|
|
|
|
self.nc = head.nc
|
|
|
|
|
self.nm = head.nm if hasattr(head, "nm") else 32
|
|
|
|
|
self.names = model.names
|
|
|
|
|
if isinstance(self.names, (list, tuple)): # old format
|
|
|
|
|
self.names = dict(enumerate(self.names))
|
|
|
|
|
|
|
|
|
|
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
|
|
|
|
self.niou = self.iouv.numel()
|
|
|
|
|
self.seen = 0
|
|
|
|
|
self.metrics.names = self.names
|
|
|
|
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
|
|
|
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
|
|
|
|
|
self.loss = torch.zeros(4, device=self.device)
|
|
|
|
|
self.jdict = []
|
|
|
|
|
self.stats = []
|
|
|
|
|
self.plot_masks = []
|
|
|
|
|
|
|
|
|
|
def get_desc(self):
|
|
|
|
@ -150,21 +135,6 @@ class SegmentationValidator(DetectionValidator):
|
|
|
|
|
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
def print_results(self):
|
|
|
|
|
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
|
|
|
|
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
|
|
|
|
if self.nt_per_class.sum() == 0:
|
|
|
|
|
self.logger.warning(
|
|
|
|
|
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
|
|
|
|
|
|
|
|
|
# Print results per class
|
|
|
|
|
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
|
|
|
|
|
for i, c in enumerate(self.metrics.ap_class_index):
|
|
|
|
|
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
|
|
|
|
|
|
|
|
|
if self.args.plots:
|
|
|
|
|
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
|
|
|
|
|
|
|
|
|
|
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
|
|
|
|
"""
|
|
|
|
|
Return correct prediction matrix
|
|
|
|
@ -202,12 +172,6 @@ class SegmentationValidator(DetectionValidator):
|
|
|
|
|
correct[matches[:, 1].astype(int), i] = True
|
|
|
|
|
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
|
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
|
|
|
# TODO: manage splits differently
|
|
|
|
|
# calculate stride - check if model is initialized
|
|
|
|
|
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
|
|
|
|
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
|
|
|
|
|
|
|
|
|
# TODO: probably add this to class Metrics
|
|
|
|
|
@property
|
|
|
|
|
def metric_keys(self):
|
|
|
|
|