Revert augment_hyps (#70)
This commit is contained in:
@ -9,7 +9,7 @@ from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.checks import check_file
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
@ -20,15 +20,16 @@ class DetectionValidator(BaseValidator):
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
|
||||
super().__init__(dataloader, save_dir, pbar, logger, args)
|
||||
if self.args.save_json:
|
||||
check_requirements(['pycocotools'])
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None
|
||||
self.is_coco = False
|
||||
self.class_map = None
|
||||
self.targets = None
|
||||
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots)
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
|
||||
def preprocess(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||
@ -44,11 +45,7 @@ class DetectionValidator(BaseValidator):
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
if self.training:
|
||||
head = de_parallel(model).model[-1]
|
||||
else:
|
||||
head = de_parallel(model).model.model[-1]
|
||||
|
||||
head = model.model[-1] if self.training else model.model.model[-1]
|
||||
if self.data:
|
||||
self.is_coco = isinstance(self.data.get('val'),
|
||||
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
||||
@ -57,15 +54,8 @@ class DetectionValidator(BaseValidator):
|
||||
self.names = model.names
|
||||
if isinstance(self.names, (list, tuple)): # old format
|
||||
self.names = dict(enumerate(self.names))
|
||||
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.metrics.names = self.names
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
|
||||
self.loss = torch.zeros(3, device=self.device)
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
|
||||
def get_desc(self):
|
||||
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
|
||||
@ -135,7 +125,7 @@ class DetectionValidator(BaseValidator):
|
||||
return metrics
|
||||
|
||||
def print_results(self):
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metric_keys) # print format
|
||||
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
if self.nt_per_class.sum() == 0:
|
||||
self.logger.warning(
|
||||
|
@ -8,8 +8,7 @@ import torch.nn.functional as F
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_requirements
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
@ -26,10 +25,7 @@ class SegmentationValidator(DetectionValidator):
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
self.data_dict = yaml_load(check_file(self.args.data)) if self.args.data else None
|
||||
self.is_coco = False
|
||||
self.class_map = None
|
||||
self.targets = None
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots)
|
||||
|
||||
def preprocess(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||
@ -46,29 +42,18 @@ class SegmentationValidator(DetectionValidator):
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
if self.training:
|
||||
head = de_parallel(model).model[-1]
|
||||
else:
|
||||
head = de_parallel(model).model.model[-1]
|
||||
|
||||
head = model.model[-1] if self.training else model.model.model[-1]
|
||||
if self.data:
|
||||
self.is_coco = isinstance(self.data.get('val'),
|
||||
str) and self.data['val'].endswith(f'coco{os.sep}val2017.txt')
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
self.nm = head.nm if hasattr(head, "nm") else 32
|
||||
self.nc = head.nc
|
||||
self.nm = head.nm if hasattr(head, "nm") else 32
|
||||
self.names = model.names
|
||||
if isinstance(self.names, (list, tuple)): # old format
|
||||
self.names = dict(enumerate(self.names))
|
||||
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.metrics.names = self.names
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
|
||||
self.loss = torch.zeros(4, device=self.device)
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
self.plot_masks = []
|
||||
|
||||
def get_desc(self):
|
||||
@ -150,21 +135,6 @@ class SegmentationValidator(DetectionValidator):
|
||||
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||
'''
|
||||
|
||||
def print_results(self):
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
||||
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
if self.nt_per_class.sum() == 0:
|
||||
self.logger.warning(
|
||||
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
||||
|
||||
# Print results per class
|
||||
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
|
||||
for i, c in enumerate(self.metrics.ap_class_index):
|
||||
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
||||
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
|
||||
|
||||
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
"""
|
||||
Return correct prediction matrix
|
||||
@ -202,12 +172,6 @@ class SegmentationValidator(DetectionValidator):
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
# TODO: manage splits differently
|
||||
# calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
||||
|
||||
# TODO: probably add this to class Metrics
|
||||
@property
|
||||
def metric_keys(self):
|
||||
|
Reference in New Issue
Block a user