README and Docs updates with A100 TensorRT times (#270)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -22,32 +22,31 @@ class AutoBackend(nn.Module):
|
||||
|
||||
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||||
"""
|
||||
Ultralytics YOLO MultiBackend class for python inference on various backends
|
||||
MultiBackend class for python inference on various platforms using Ultralytics YOLO.
|
||||
|
||||
Args:
|
||||
weights: the path to the weights file. Defaults to yolov8n.pt
|
||||
device: The device to run the model on.
|
||||
dnn: If you want to use OpenCV's DNN module to run the inference, set this to True. Defaults to
|
||||
False
|
||||
data: a dictionary containing the following keys:
|
||||
fp16: If true, will use half precision. Defaults to False
|
||||
fuse: whether to fuse the model or not. Defaults to True
|
||||
weights (str): The path to the weights file. Default: 'yolov8n.pt'
|
||||
device (torch.device): The device to run the model on.
|
||||
dnn (bool): Use OpenCV's DNN module for inference if True, defaults to False.
|
||||
data (dict): Additional data, optional
|
||||
fp16 (bool): If True, use half precision. Default: False
|
||||
fuse (bool): Whether to fuse the model or not. Default: True
|
||||
|
||||
Supported format and their usage:
|
||||
| Platform | weights |
|
||||
|-----------------------|------------------|
|
||||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx --dnn |
|
||||
| OpenVINO | *.xml |
|
||||
| CoreML | *.mlmodel |
|
||||
| TensorRT | *.engine |
|
||||
| TensorFlow SavedModel | *_saved_model |
|
||||
| TensorFlow GraphDef | *.pb |
|
||||
| TensorFlow Lite | *.tflite |
|
||||
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||||
| PaddlePaddle | *_paddle_model |
|
||||
Supported formats and their usage:
|
||||
Platform | Weights Format
|
||||
-----------------------|------------------
|
||||
PyTorch | *.pt
|
||||
TorchScript | *.torchscript
|
||||
ONNX Runtime | *.onnx
|
||||
ONNX OpenCV DNN | *.onnx --dnn
|
||||
OpenVINO | *.xml
|
||||
CoreML | *.mlmodel
|
||||
TensorRT | *.engine
|
||||
TensorFlow SavedModel | *_saved_model
|
||||
TensorFlow GraphDef | *.pb
|
||||
TensorFlow Lite | *.tflite
|
||||
TensorFlow Edge TPU | *_edgetpu.tflite
|
||||
PaddlePaddle | *_paddle_model
|
||||
"""
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
@ -234,15 +233,16 @@ class AutoBackend(nn.Module):
|
||||
|
||||
def forward(self, im, augment=False, visualize=False):
|
||||
"""
|
||||
Runs inference on the given model
|
||||
Runs inference on the YOLOv8 MultiBackend model.
|
||||
|
||||
Args:
|
||||
im: the image tensor
|
||||
augment: whether to augment the image. Defaults to False
|
||||
visualize: if True, then the network will output the feature maps of the last convolutional layer.
|
||||
Defaults to False
|
||||
im (torch.tensor): The image tensor to perform inference on.
|
||||
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||||
visualize (bool): whether to visualize the output predictions, defaults to False
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing the raw output tensor, and the processed output for visualization (if visualize=True)
|
||||
"""
|
||||
# YOLOv5 MultiBackend inference
|
||||
b, ch, h, w = im.shape # batch, channel, height, width
|
||||
if self.fp16 and im.dtype != torch.float16:
|
||||
im = im.half() # to FP16
|
||||
@ -325,19 +325,25 @@ class AutoBackend(nn.Module):
|
||||
|
||||
def from_numpy(self, x):
|
||||
"""
|
||||
`from_numpy` converts a numpy array to a tensor
|
||||
Convert a numpy array to a tensor.
|
||||
|
||||
Args:
|
||||
x: the numpy array to convert
|
||||
"""
|
||||
Args:
|
||||
x (numpy.ndarray): The array to be converted.
|
||||
|
||||
Returns:
|
||||
(torch.tensor): The converted tensor
|
||||
"""
|
||||
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
"""
|
||||
Warmup model by running inference once
|
||||
Warm up the model by running one forward pass with a dummy input.
|
||||
|
||||
Args:
|
||||
imgsz: the size of the image you want to run inference on.
|
||||
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
|
||||
|
||||
Returns:
|
||||
(None): This method runs the forward pass and don't return any value
|
||||
"""
|
||||
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
||||
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
||||
|
@ -17,35 +17,36 @@ from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_wei
|
||||
|
||||
|
||||
class BaseModel(nn.Module):
|
||||
'''
|
||||
The BaseModel class is a base class for all the models in the Ultralytics YOLO family.
|
||||
'''
|
||||
"""
|
||||
The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
|
||||
"""
|
||||
|
||||
def forward(self, x, profile=False, visualize=False):
|
||||
"""
|
||||
> `forward` is a wrapper for `_forward_once` that runs the model on a single scale
|
||||
Forward pass of the model on a single scale.
|
||||
Wrapper for `_forward_once` method.
|
||||
|
||||
Args:
|
||||
x: the input image
|
||||
profile: whether to profile the model. Defaults to False
|
||||
visualize: if True, will return the intermediate feature maps. Defaults to False
|
||||
x (torch.tensor): The input image tensor
|
||||
profile (bool): Whether to profile the model, defaults to False
|
||||
visualize (bool): Whether to return the intermediate feature maps, defaults to False
|
||||
|
||||
Returns:
|
||||
The output of the network.
|
||||
(torch.tensor): The output of the network.
|
||||
"""
|
||||
return self._forward_once(x, profile, visualize)
|
||||
|
||||
def _forward_once(self, x, profile=False, visualize=False):
|
||||
"""
|
||||
> Forward pass of the network
|
||||
Perform a forward pass through the network.
|
||||
|
||||
Args:
|
||||
x: input to the model
|
||||
profile: if True, the time taken for each layer will be printed. Defaults to False
|
||||
visualize: If True, it will save the feature maps of the model. Defaults to False
|
||||
x (torch.tensor): The input tensor to the model
|
||||
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||||
visualize (bool): Save the feature maps of the model if True, defaults to False
|
||||
|
||||
Returns:
|
||||
The last layer of the model.
|
||||
(torch.tensor): The last output of the model.
|
||||
"""
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model:
|
||||
@ -62,13 +63,15 @@ class BaseModel(nn.Module):
|
||||
|
||||
def _profile_one_layer(self, m, x, dt):
|
||||
"""
|
||||
It takes a model, an input, and a list of times, and it profiles the model on the input, appending
|
||||
the time to the list
|
||||
Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to the provided list.
|
||||
|
||||
Args:
|
||||
m: the model
|
||||
x: the input image
|
||||
dt: list of time taken for each layer
|
||||
m (nn.Module): The layer to be profiled.
|
||||
x (torch.Tensor): The input data to the layer.
|
||||
dt (list): A list to store the computation time of the layer.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
||||
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
||||
@ -84,10 +87,10 @@ class BaseModel(nn.Module):
|
||||
|
||||
def fuse(self):
|
||||
"""
|
||||
> It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer
|
||||
Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the computation efficiency.
|
||||
|
||||
Returns:
|
||||
The model is being returned.
|
||||
(nn.Module): The fused model is returned.
|
||||
"""
|
||||
LOGGER.info('Fusing layers... ')
|
||||
for m in self.model.modules():
|
||||
@ -103,8 +106,8 @@ class BaseModel(nn.Module):
|
||||
Prints model information
|
||||
|
||||
Args:
|
||||
verbose: if True, prints out the model information. Defaults to False
|
||||
imgsz: the size of the image that the model will be trained on. Defaults to 640
|
||||
verbose (bool): if True, prints out the model information. Defaults to False
|
||||
imgsz (int): the size of the image that the model will be trained on. Defaults to 640
|
||||
"""
|
||||
model_info(self, verbose, imgsz)
|
||||
|
||||
@ -129,10 +132,10 @@ class BaseModel(nn.Module):
|
||||
|
||||
def load(self, weights):
|
||||
"""
|
||||
> This function loads the weights of the model from a file
|
||||
This function loads the weights of the model from a file
|
||||
|
||||
Args:
|
||||
weights: The weights to load into the model.
|
||||
weights (str): The weights to load into the model.
|
||||
"""
|
||||
# Force all tasks to implement this function
|
||||
raise NotImplementedError("This function needs to be implemented by derived classes!")
|
||||
|
Reference in New Issue
Block a user