Add colab template and minor fixes (#137)

Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Ayush Chaurasia 2 years ago committed by GitHub
parent 3c18aa5278
commit dcd8ef68e6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,16 @@
# Welcome to Ultralytics YOLO <div align="center">
<a href="https://ultralytics.com/yolov5" target="_blank">
Welcome to the Ultralytics YOLO documentation landing page! Ultralytics YOLOv8 is the latest version of the YOLO (You <img width="1024" src="https://user-images.githubusercontent.com/26833433/210431393-39c997b8-92a7-4957-864f-1f312004eb54.png"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/glenn-jocher/glenn-jocher.github.io/blob/main/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<br>
</div>
# Welcome to Ultralytics YOLOv8
Welcome to the Ultralytics YOLOv8 documentation landing page! Ultralytics YOLOv8 is the latest version of the YOLO (You
Only Look Once) object detection and image segmentation model developed by Ultralytics. This page serves as the starting Only Look Once) object detection and image segmentation model developed by Ultralytics. This page serves as the starting
point for exploring the various resources available to help you get started with YOLOv8 and understand its features and point for exploring the various resources available to help you get started with YOLOv8 and understand its features and
capabilities. capabilities.

@ -47,7 +47,7 @@ dnn: False # use OpenCV DNN for ONNX inference
plots: True # show plots during training plots: True # show plots during training
# Prediction settings -------------------------------------------------------------------------------------------------- # Prediction settings --------------------------------------------------------------------------------------------------
source: "ultralytics/assets" # source directory for images or videos source: null # source directory for images or videos
show: False # show results if possible show: False # show results if possible
save_txt: False # save results as .txt file save_txt: False # save results as .txt file
save_conf: False # save results with confidence scores save_conf: False # save results with confidence scores

@ -224,4 +224,5 @@ class YOLO:
args.pop("device", None) args.pop("device", None)
args.pop("project", None) args.pop("project", None)
args.pop("name", None) args.pop("name", None)
args.pop("batch_size", None) args.pop("batch", None)
args.pop("epochs", None)

@ -2,7 +2,7 @@ import hydra
import torch import torch
from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.utils import DEFAULT_CONFIG, ops from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops
from ultralytics.yolo.utils.checks import check_imgsz from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
@ -83,8 +83,9 @@ class DetectionPredictor(BasePredictor):
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg): def predict(cfg):
cfg.model = cfg.model or "n.pt" cfg.model = cfg.model or "yolov8n.pt"
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
cfg.source = cfg.source or ROOT / "assets"
predictor = DetectionPredictor(cfg) predictor = DetectionPredictor(cfg)
predictor() predictor()

Loading…
Cancel
Save