ultralytics 8.0.14
Hydra removal fixes and cleanup (#542)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kamlesh Kumar <patelkamleshpatel364@gmail.com>
This commit is contained in:
230
ultralytics/yolo/cfg/__init__.py
Normal file
230
ultralytics/yolo/cfg/__init__.py
Normal file
@ -0,0 +1,230 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
import argparse
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
from difflib import get_close_matches
|
||||
from pathlib import Path
|
||||
from types import SimpleNamespace
|
||||
from typing import Dict, Union
|
||||
|
||||
from ultralytics import __version__, yolo
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, PREFIX, checks, colorstr, print_settings, yaml_load
|
||||
|
||||
DIR = Path(__file__).parent
|
||||
|
||||
CLI_HELP_MSG = \
|
||||
"""
|
||||
YOLOv8 CLI Usage examples:
|
||||
|
||||
1. Install the ultralytics package:
|
||||
|
||||
pip install ultralytics
|
||||
|
||||
2. Train, Val, Predict and Export using 'yolo' commands:
|
||||
|
||||
yolo TASK MODE ARGS
|
||||
|
||||
Where TASK (optional) is one of [detect, segment, classify]
|
||||
MODE (required) is one of [train, val, predict, export]
|
||||
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
||||
For a full list of available ARGS see https://docs.ultralytics.com/cfg.
|
||||
|
||||
Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
|
||||
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
|
||||
|
||||
Validate a pretrained detection model at batch-size 1 and image size 640:
|
||||
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||
|
||||
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
||||
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
||||
|
||||
3. Run special commands:
|
||||
|
||||
yolo help
|
||||
yolo checks
|
||||
yolo version
|
||||
yolo settings
|
||||
yolo copy-cfg
|
||||
|
||||
Docs: https://docs.ultralytics.com/cli
|
||||
Community: https://community.ultralytics.com
|
||||
GitHub: https://github.com/ultralytics/ultralytics
|
||||
"""
|
||||
|
||||
|
||||
class UltralyticsCFG(SimpleNamespace):
|
||||
"""
|
||||
UltralyticsCFG iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops
|
||||
"""
|
||||
|
||||
def __iter__(self):
|
||||
return iter(vars(self).items())
|
||||
|
||||
|
||||
def cfg2dict(cfg):
|
||||
"""
|
||||
Convert a configuration object to a dictionary.
|
||||
|
||||
This function converts a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
|
||||
|
||||
Inputs:
|
||||
cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.
|
||||
|
||||
Returns:
|
||||
cfg (dict): Configuration object in dictionary format.
|
||||
"""
|
||||
if isinstance(cfg, (str, Path)):
|
||||
cfg = yaml_load(cfg) # load dict
|
||||
elif isinstance(cfg, SimpleNamespace):
|
||||
cfg = vars(cfg) # convert to dict
|
||||
return cfg
|
||||
|
||||
|
||||
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace], overrides: Dict = None):
|
||||
"""
|
||||
Load and merge configuration data from a file or dictionary.
|
||||
|
||||
Args:
|
||||
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
|
||||
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.
|
||||
|
||||
Returns:
|
||||
(SimpleNamespace): Training arguments namespace.
|
||||
"""
|
||||
cfg = cfg2dict(cfg)
|
||||
|
||||
# Merge overrides
|
||||
if overrides:
|
||||
overrides = cfg2dict(overrides)
|
||||
check_cfg_mismatch(cfg, overrides)
|
||||
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
|
||||
|
||||
# Return instance
|
||||
return UltralyticsCFG(**cfg)
|
||||
|
||||
|
||||
def check_cfg_mismatch(base: Dict, custom: Dict):
|
||||
"""
|
||||
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
|
||||
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
|
||||
|
||||
Inputs:
|
||||
- custom (Dict): a dictionary of custom configuration options
|
||||
- base (Dict): a dictionary of base configuration options
|
||||
"""
|
||||
base, custom = (set(x.keys()) for x in (base, custom))
|
||||
mismatched = [x for x in custom if x not in base]
|
||||
for option in mismatched:
|
||||
LOGGER.info(f"{colorstr(option)} is not a valid key. Similar keys: {get_close_matches(option, base, 3, 0.6)}")
|
||||
if mismatched:
|
||||
sys.exit()
|
||||
|
||||
|
||||
def entrypoint(debug=False):
|
||||
"""
|
||||
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
|
||||
to the package.
|
||||
|
||||
This function allows for:
|
||||
- passing mandatory YOLO args as a list of strings
|
||||
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
|
||||
- specifying the mode, either 'train', 'val', 'test', or 'predict'
|
||||
- running special modes like 'checks'
|
||||
- passing overrides to the package's configuration
|
||||
|
||||
It uses the package's default cfg and initializes it using the passed overrides.
|
||||
Then it calls the CLI function with the composed cfg
|
||||
"""
|
||||
if debug:
|
||||
args = ['train', 'predict', 'model=yolov8n.pt'] # for testing
|
||||
else:
|
||||
if len(sys.argv) == 1: # no arguments passed
|
||||
LOGGER.info(CLI_HELP_MSG)
|
||||
return
|
||||
|
||||
parser = argparse.ArgumentParser(description='YOLO parser')
|
||||
parser.add_argument('args', type=str, nargs='+', help='YOLO args')
|
||||
args = parser.parse_args().args
|
||||
args = re.sub(r'\s*=\s*', '=', ' '.join(args)).split(' ') # remove whitespaces around = sign
|
||||
|
||||
tasks = 'detect', 'segment', 'classify'
|
||||
modes = 'train', 'val', 'predict', 'export'
|
||||
special_modes = {
|
||||
'help': lambda: LOGGER.info(CLI_HELP_MSG),
|
||||
'checks': checks.check_yolo,
|
||||
'version': lambda: LOGGER.info(__version__),
|
||||
'settings': print_settings,
|
||||
'copy-cfg': copy_default_config}
|
||||
|
||||
overrides = {} # basic overrides, i.e. imgsz=320
|
||||
defaults = yaml_load(DEFAULT_CFG_PATH)
|
||||
for a in args:
|
||||
if '=' in a:
|
||||
if a.startswith('cfg='): # custom.yaml passed
|
||||
custom_config = Path(a.split('=')[-1])
|
||||
LOGGER.info(f"{PREFIX}Overriding {DEFAULT_CFG_PATH} with {custom_config}")
|
||||
overrides = {k: v for k, v in yaml_load(custom_config).items() if k not in {'cfg'}}
|
||||
else:
|
||||
k, v = a.split('=')
|
||||
try:
|
||||
if k == 'device': # special DDP handling, i.e. device='0,1,2,3'
|
||||
v = v.replace('[', '').replace(']', '') # handle device=[0,1,2,3]
|
||||
v = v.replace(" ", "") # handle device=[0, 1, 2, 3]
|
||||
v = v.replace('\\', '') # handle device=\'0,1,2,3\'
|
||||
overrides[k] = v
|
||||
else:
|
||||
overrides[k] = eval(v) # convert strings to integers, floats, bools, etc.
|
||||
except (NameError, SyntaxError):
|
||||
overrides[k] = v
|
||||
elif a in tasks:
|
||||
overrides['task'] = a
|
||||
elif a in modes:
|
||||
overrides['mode'] = a
|
||||
elif a in special_modes:
|
||||
special_modes[a]()
|
||||
return
|
||||
elif a in defaults and defaults[a] is False:
|
||||
overrides[a] = True # auto-True for default False args, i.e. 'yolo show' sets show=True
|
||||
elif a in defaults:
|
||||
raise SyntaxError(f"'{a}' is a valid YOLO argument but is missing an '=' sign to set its value, "
|
||||
f"i.e. try '{a}={defaults[a]}'"
|
||||
f"\n{CLI_HELP_MSG}")
|
||||
else:
|
||||
raise SyntaxError(
|
||||
f"'{a}' is not a valid YOLO argument. For a full list of valid arguments see "
|
||||
f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml"
|
||||
f"\n{CLI_HELP_MSG}")
|
||||
|
||||
cfg = get_cfg(defaults, overrides) # create CFG instance
|
||||
|
||||
# Mapping from task to module
|
||||
module = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}.get(cfg.task)
|
||||
if not module:
|
||||
raise SyntaxError(f"yolo task={cfg.task} is invalid. Valid tasks are: {', '.join(tasks)}\n{CLI_HELP_MSG}")
|
||||
|
||||
# Mapping from mode to function
|
||||
func = {
|
||||
"train": module.train,
|
||||
"val": module.val,
|
||||
"predict": module.predict,
|
||||
"export": yolo.engine.exporter.export}.get(cfg.mode)
|
||||
if not func:
|
||||
raise SyntaxError(f"yolo mode={cfg.mode} is invalid. Valid modes are: {', '.join(modes)}\n{CLI_HELP_MSG}")
|
||||
|
||||
func(cfg)
|
||||
|
||||
|
||||
# Special modes --------------------------------------------------------------------------------------------------------
|
||||
def copy_default_config():
|
||||
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
|
||||
shutil.copy2(DEFAULT_CFG_PATH, new_file)
|
||||
LOGGER.info(f"{PREFIX}{DEFAULT_CFG_PATH} copied to {new_file}\n"
|
||||
f"Usage for running YOLO with this new custom cfg:\nyolo cfg={new_file} args...")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
entrypoint()
|
108
ultralytics/yolo/cfg/default.yaml
Normal file
108
ultralytics/yolo/cfg/default.yaml
Normal file
@ -0,0 +1,108 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
task: "detect" # inference task, i.e. detect, segment, classify
|
||||
mode: "train" # YOLO mode, i.e. train, val, predict, export
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: null # path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: null # path to data file, i.e. i.e. coco128.yaml
|
||||
epochs: 100 # number of epochs to train for
|
||||
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # size of input images as integer or w,h
|
||||
save: True # save train checkpoints and predict results
|
||||
cache: False # True/ram, disk or False. Use cache for data loading
|
||||
device: null # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # number of worker threads for data loading (per RANK if DDP)
|
||||
project: null # project name
|
||||
name: null # experiment name
|
||||
exist_ok: False # whether to overwrite existing experiment
|
||||
pretrained: False # whether to use a pretrained model
|
||||
optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
verbose: False # whether to print verbose output
|
||||
seed: 0 # random seed for reproducibility
|
||||
deterministic: True # whether to enable deterministic mode
|
||||
single_cls: False # train multi-class data as single-class
|
||||
image_weights: False # use weighted image selection for training
|
||||
rect: False # support rectangular training
|
||||
cos_lr: False # use cosine learning rate scheduler
|
||||
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
# Segmentation
|
||||
overlap_mask: True # masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # mask downsample ratio (segment train only)
|
||||
# Classification
|
||||
dropout: 0.0 # use dropout regularization (classify train only)
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
val: True # validate/test during training
|
||||
save_json: False # save results to JSON file
|
||||
save_hybrid: False # save hybrid version of labels (labels + additional predictions)
|
||||
conf: null # object confidence threshold for detection (default 0.25 predict, 0.001 val)
|
||||
iou: 0.7 # intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # maximum number of detections per image
|
||||
half: False # use half precision (FP16)
|
||||
dnn: False # use OpenCV DNN for ONNX inference
|
||||
plots: True # save plots during train/val
|
||||
|
||||
# Prediction settings --------------------------------------------------------------------------------------------------
|
||||
source: null # source directory for images or videos
|
||||
show: False # show results if possible
|
||||
save_txt: False # save results as .txt file
|
||||
save_conf: False # save results with confidence scores
|
||||
save_crop: False # save cropped images with results
|
||||
hide_labels: False # hide labels
|
||||
hide_conf: False # hide confidence scores
|
||||
vid_stride: 1 # video frame-rate stride
|
||||
line_thickness: 3 # bounding box thickness (pixels)
|
||||
visualize: False # visualize model features
|
||||
augment: False # apply image augmentation to prediction sources
|
||||
agnostic_nms: False # class-agnostic NMS
|
||||
retina_masks: False # use high-resolution segmentation masks
|
||||
classes: null # filter results by class, i.e. class=0, or class=[0,2,3]
|
||||
|
||||
# Export settings ------------------------------------------------------------------------------------------------------
|
||||
format: torchscript # format to export to
|
||||
keras: False # use Keras
|
||||
optimize: False # TorchScript: optimize for mobile
|
||||
int8: False # CoreML/TF INT8 quantization
|
||||
dynamic: False # ONNX/TF/TensorRT: dynamic axes
|
||||
simplify: False # ONNX: simplify model
|
||||
opset: 17 # ONNX: opset version
|
||||
workspace: 4 # TensorRT: workspace size (GB)
|
||||
nms: False # CoreML: add NMS
|
||||
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.01 # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
||||
warmup_momentum: 0.8 # warmup initial momentum
|
||||
warmup_bias_lr: 0.1 # warmup initial bias lr
|
||||
box: 7.5 # box loss gain
|
||||
cls: 0.5 # cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # dfl loss gain
|
||||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
||||
label_smoothing: 0.0 # label smoothing (fraction)
|
||||
nbs: 64 # nominal batch size
|
||||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # image rotation (+/- deg)
|
||||
translate: 0.1 # image translation (+/- fraction)
|
||||
scale: 0.5 # image scale (+/- gain)
|
||||
shear: 0.0 # image shear (+/- deg)
|
||||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # image flip up-down (probability)
|
||||
fliplr: 0.5 # image flip left-right (probability)
|
||||
mosaic: 1.0 # image mosaic (probability)
|
||||
mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
|
||||
# Custom config.yaml ---------------------------------------------------------------------------------------------------
|
||||
cfg: null # for overriding defaults.yaml
|
||||
|
||||
# Debug, do not modify -------------------------------------------------------------------------------------------------
|
||||
v5loader: False # use legacy YOLOv5 dataloader
|
Reference in New Issue
Block a user