General cleanup (#69)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
single_channel
Laughing 2 years ago committed by GitHub
parent 7ae45c6cc4
commit d63ee112d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,8 +1,12 @@
import cv2 import cv2
import hydra
import numpy as np import numpy as np
from omegaconf import OmegaConf
from ultralytics.yolo.data import build_dataloader from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.utils import ROOT
from ultralytics.yolo.utils.plotting import plot_images
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class Colors: class Colors:
@ -51,47 +55,34 @@ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
) )
with open("ultralytics/tests/data/dataloader/hyp_test.yaml") as f: @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
hyp = OmegaConf.load(f) def test(cfg):
cfg.task = "detect"
dataloader, dataset = build_dataloader( cfg.mode = "train"
img_path="/d/dataset/COCO/coco128-seg/images", dataloader, _ = build_dataloader(
img_size=640, cfg=cfg,
label_path=None,
cache=False,
hyp=hyp,
augment=False,
prefix="",
rect=False,
batch_size=4, batch_size=4,
img_path="/d/dataset/COCO/coco128-seg/images",
stride=32, stride=32,
pad=0.5, label_path=None,
use_segments=True, mode=cfg.mode,
use_keypoints=False, )
)
for d in dataloader:
for d in dataloader: images = d["img"]
idx = 1 # show which image inside one batch cls = d["cls"].squeeze(-1)
img = d["img"][idx].numpy() bboxes = d["bboxes"]
img = np.ascontiguousarray(img.transpose(1, 2, 0)) paths = d["im_file"]
ih, iw = img.shape[:2] batch_idx = d["batch_idx"]
# print(img.shape) result = plot_images(images, batch_idx, cls, bboxes, paths=paths)
bidx = d["batch_idx"]
cls = d["cls"][bidx == idx].numpy() cv2.imshow("p", result)
bboxes = d["bboxes"][bidx == idx].numpy()
print(bboxes.shape)
bboxes[:, [0, 2]] *= iw
bboxes[:, [1, 3]] *= ih
nl = len(cls)
for i, b in enumerate(bboxes):
x, y, w, h = b
x1 = x - w / 2
x2 = x + w / 2
y1 = y - h / 2
y2 = y + h / 2
c = int(cls[i][0])
plot_one_box([int(x1), int(y1), int(x2), int(y2)], img, label=f"{c}", color=colors(c))
cv2.imshow("p", img)
if cv2.waitKey(0) == ord("q"): if cv2.waitKey(0) == ord("q"):
break break
if __name__ == "__main__":
test()
# test(augment=True, rect=False)
# test(augment=False, rect=True)
# test(augment=False, rect=False)

@ -1,9 +1,11 @@
import cv2 import cv2
import numpy as np import hydra
import torch
from omegaconf import OmegaConf
from ultralytics.yolo.data import build_dataloader from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.utils import ROOT
from ultralytics.yolo.utils.plotting import plot_images
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class Colors: class Colors:
@ -52,77 +54,34 @@ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
) )
with open("ultralytics/tests/data/dataloader/hyp_test.yaml") as f: @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
hyp = OmegaConf.load(f) def test(cfg):
cfg.task = "segment"
cfg.mode = "train"
def test(augment, rect):
dataloader, _ = build_dataloader( dataloader, _ = build_dataloader(
img_path="/d/dataset/COCO/coco128-seg/images", cfg=cfg,
img_size=640,
label_path=None,
cache=False,
hyp=hyp,
augment=augment,
prefix="",
rect=rect,
batch_size=4, batch_size=4,
img_path="/d/dataset/COCO/coco128-seg/images",
stride=32, stride=32,
pad=0.5, label_path=None,
use_segments=True, mode=cfg.mode,
use_keypoints=False,
) )
for d in dataloader: for d in dataloader:
# info images = d["img"]
im_file = d["im_file"] masks = d["masks"]
ori_shape = d["ori_shape"] cls = d["cls"].squeeze(-1)
resize_shape = d["resized_shape"] bboxes = d["bboxes"]
print(ori_shape, resize_shape) paths = d["im_file"]
print(im_file) batch_idx = d["batch_idx"]
result = plot_images(images, batch_idx, cls, bboxes, masks, paths=paths)
# labels cv2.imshow("p", result)
idx = 1 # show which image inside one batch
img = d["img"][idx].numpy()
img = np.ascontiguousarray(img.transpose(1, 2, 0))
ih, iw = img.shape[:2]
# print(img.shape)
bidx = d["batch_idx"]
cls = d["cls"][bidx == idx].numpy()
bboxes = d["bboxes"][bidx == idx].numpy()
masks = d["masks"][idx]
print(bboxes.shape)
bboxes[:, [0, 2]] *= iw
bboxes[:, [1, 3]] *= ih
nl = len(cls)
index = torch.arange(nl).view(nl, 1, 1) + 1
masks = masks.repeat(nl, 1, 1)
# print(masks.shape, index.shape)
masks = torch.where(masks == index, 1, 0)
masks = masks.numpy().astype(np.uint8)
print(masks.shape)
# keypoints = d["keypoints"]
for i, b in enumerate(bboxes):
x, y, w, h = b
x1 = x - w / 2
x2 = x + w / 2
y1 = y - h / 2
y2 = y + h / 2
c = int(cls[i][0])
# print(x1, y1, x2, y2)
plot_one_box([int(x1), int(y1), int(x2), int(y2)], img, label=f"{c}", color=colors(c))
mask = masks[i]
mask = cv2.resize(mask, (iw, ih))
mask = mask.astype(bool)
img[mask] = img[mask] * 0.5 + np.array(colors(c)) * 0.5
cv2.imshow("p", img)
if cv2.waitKey(0) == ord("q"): if cv2.waitKey(0) == ord("q"):
break break
if __name__ == "__main__": if __name__ == "__main__":
test(augment=True, rect=False) test()
test(augment=False, rect=True) # test(augment=True, rect=False)
test(augment=False, rect=False) # test(augment=False, rect=True)
# test(augment=False, rect=False)

@ -521,23 +521,25 @@ class CopyPaste:
instances.convert_bbox(format="xyxy") instances.convert_bbox(format="xyxy")
if self.p and len(instances.segments): if self.p and len(instances.segments):
n = len(instances) n = len(instances)
h, w, _ = im.shape # height, width, channels _, w, _ = im.shape # height, width, channels
im_new = np.zeros(im.shape, np.uint8) im_new = np.zeros(im.shape, np.uint8)
j = random.sample(range(n), k=round(self.p * n))
c, instance = cls[j], instances[j] # calculate ioa first then select indexes randomly
instance.fliplr(w) ins_flip = deepcopy(instances)
ioa = bbox_ioa(instance.bboxes, instances.bboxes) # intersection over area, (N, M) ins_flip.fliplr(w)
i = (ioa < 0.30).all(1) # (N, )
if i.sum(): ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M)
cls = np.concatenate((cls, c[i]), axis=0) indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
instances = Instances.concatenate((instances, instance[i]), axis=0) n = len(indexes)
cv2.drawContours(im_new, instances.segments[j][i].astype(np.int32), -1, (255, 255, 255), cv2.FILLED) for j in random.sample(list(indexes), k=round(self.p * n)):
cls = np.concatenate((cls, cls[[j]]), axis=0)
result = cv2.bitwise_and(src1=im, src2=im_new) instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
result = cv2.flip(result, 1) # augment segments (flip left-right) cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
i = result > 0 # pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch result = cv2.flip(im, 1) # augment segments (flip left-right)
i = cv2.flip(im_new, 1).astype(bool)
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
labels["img"] = im labels["img"] = im
labels["cls"] = cls labels["cls"] = cls
labels["instances"] = instances labels["instances"] = instances

@ -4,6 +4,7 @@ Top-level YOLO model interface. First principle usage example - https://github.c
import torch import torch
import yaml import yaml
from ultralytics import yolo
from ultralytics.yolo.utils import LOGGER from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.checks import check_yaml from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.modeling import attempt_load_weights from ultralytics.yolo.utils.modeling import attempt_load_weights

@ -327,7 +327,7 @@ class BaseTrainer:
metrics = self.validator(self) metrics = self.validator(self)
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness: if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = self.fitness self.best_fitness = fitness
return metrics, fitness return metrics, fitness
def log(self, text, rank=-1): def log(self, text, rank=-1):

@ -263,18 +263,6 @@ class ConfusionMatrix:
print(' '.join(map(str, self.matrix[i]))) print(' '.join(map(str, self.matrix[i])))
def fitness_detection(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_segmentation(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
return (x[:, :8] * w).sum(1)
def smooth(y, f=0.05): def smooth(y, f=0.05):
# Box filter of fraction f # Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
@ -422,55 +410,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
return tp, fp, p, r, f1, ap, unique_classes.astype(int) return tp, fp, p, r, f1, ap, unique_classes.astype(int)
def ap_per_class_box_and_mask(
tp_m,
tp_b,
conf,
pred_cls,
target_cls,
plot=False,
save_dir=".",
names=(),
):
"""
Args:
tp_b: tp of boxes.
tp_m: tp of masks.
other arguments see `func: ap_per_class`.
"""
results_boxes = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Box")[2:]
results_masks = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Mask")[2:]
results = {
"boxes": {
"p": results_boxes[0],
"r": results_boxes[1],
"f1": results_boxes[2],
"ap": results_boxes[3],
"ap_class": results_boxes[4]},
"masks": {
"p": results_masks[0],
"r": results_masks[1],
"f1": results_masks[2],
"ap": results_masks[3],
"ap_class": results_masks[4]}}
return results
class Metric: class Metric:
def __init__(self) -> None: def __init__(self) -> None:
@ -542,6 +481,11 @@ class Metric:
maps[c] = self.ap[i] maps[c] = self.ap[i]
return maps return maps
def fitness(self):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (np.array(self.mean_results()) * w).sum()
def update(self, results): def update(self, results):
""" """
Args: Args:
@ -555,20 +499,80 @@ class Metric:
self.ap_class_index = ap_class_index self.ap_class_index = ap_class_index
class Metrics: class DetMetrics:
"""Metric for boxes and masks."""
def __init__(self) -> None: def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.metric = Metric()
def process(self, tp, conf, pred_cls, target_cls):
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
names=self.names)[2:]
self.metric.update(results)
@property
def keys(self):
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"]
def mean_results(self):
return self.metric.mean_results()
def class_result(self, i):
return self.metric.class_result(i)
def get_maps(self, nc):
return self.metric.get_maps(nc)
def fitness(self):
return self.metric.fitness()
@property
def ap_class_index(self):
return self.metric.ap_class_index
class SegmentMetrics:
def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.metric_box = Metric() self.metric_box = Metric()
self.metric_mask = Metric() self.metric_mask = Metric()
def update(self, results): def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
""" results_mask = ap_per_class(tp_m,
Args: conf,
results: Dict{'boxes': Dict{}, 'masks': Dict{}} pred_cls,
""" target_cls,
self.metric_box.update(list(results["boxes"].values())) plot=self.plot,
self.metric_mask.update(list(results["masks"].values())) save_dir=self.save_dir,
names=self.names,
prefix="Mask")[2:]
self.metric_mask.update(results_mask)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix="Box")[2:]
self.metric_box.update(results_box)
@property
def keys(self):
return [
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP_0.5(B)",
"metrics/mAP_0.5:0.95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP_0.5(M)",
"metrics/mAP_0.5:0.95(M)"]
def mean_results(self): def mean_results(self):
return self.metric_box.mean_results() + self.metric_mask.mean_results() return self.metric_box.mean_results() + self.metric_mask.mean_results()
@ -579,6 +583,9 @@ class Metrics:
def get_maps(self, nc): def get_maps(self, nc):
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc) return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
def fitness(self):
return self.metric_mask.fitness() + self.metric_box.fitness()
@property @property
def ap_class_index(self): def ap_class_index(self):
# boxes and masks have the same ap_class_index # boxes and masks have the same ap_class_index

@ -84,7 +84,7 @@ class Annotator:
thickness=tf, thickness=tf,
lineType=cv2.LINE_AA) lineType=cv2.LINE_AA)
def masks(self, masks, colors, im_gpu=None, alpha=0.5): def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
"""Plot masks at once. """Plot masks at once.
Args: Args:
masks (tensor): predicted masks on cuda, shape: [n, h, w] masks (tensor): predicted masks on cuda, shape: [n, h, w]
@ -95,22 +95,6 @@ class Annotator:
if self.pil: if self.pil:
# convert to numpy first # convert to numpy first
self.im = np.asarray(self.im).copy() self.im = np.asarray(self.im).copy()
if im_gpu is None:
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
if len(masks) == 0:
return
if isinstance(masks, torch.Tensor):
masks = torch.as_tensor(masks, dtype=torch.uint8)
masks = masks.permute(1, 2, 0).contiguous()
masks = masks.cpu().numpy()
# masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
masks = scale_image(masks.shape[:2], masks, self.im.shape)
masks = np.asarray(masks, dtype=np.float32)
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
else:
if len(masks) == 0: if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0 colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
@ -125,7 +109,7 @@ class Annotator:
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alph_masks[-1] + mcs im_gpu = im_gpu * inv_alph_masks[-1] + mcs
im_mask = (im_gpu * 255).byte().cpu().numpy() im_mask = (im_gpu * 255).byte().cpu().numpy()
self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape) self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
if self.pil: if self.pil:
# convert im back to PIL and update draw # convert im back to PIL and update draw
self.fromarray(self.im) self.fromarray(self.im)
@ -186,12 +170,11 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
@threaded @threaded
def plot_images_and_masks(images, def plot_images(images,
batch_idx, batch_idx,
cls, cls,
bboxes, bboxes,
masks, masks=np.zeros(0, dtype=np.uint8),
confs=None,
paths=None, paths=None,
fname='images.jpg', fname='images.jpg',
names=None): names=None):
@ -242,10 +225,10 @@ def plot_images_and_masks(images,
if len(cls) > 0: if len(cls) > 0:
idx = batch_idx == i idx = batch_idx == i
boxes = xywh2xyxy(bboxes[idx]).T boxes = xywh2xyxy(bboxes[idx, :4]).T
classes = cls[idx].astype('int') classes = cls[idx].astype('int')
labels = confs is None # labels if no conf column labels = bboxes.shape[1] == 4 # labels if no conf column
conf = None if labels else confs[idx] # check for confidence presence (label vs pred) conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
if boxes.shape[1]: if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 if boxes.max() <= 1.01: # if normalized with tolerance 0.01
@ -291,38 +274,34 @@ def plot_images_and_masks(images,
annotator.im.save(fname) # save annotator.im.save(fname) # save
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True): def plot_results(file='path/to/results.csv', dir='', segment=False):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir) save_dir = Path(file).parent if file else Path(dir)
if segment:
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
else:
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
ax = ax.ravel() ax = ax.ravel()
files = list(save_dir.glob("results*.csv")) files = list(save_dir.glob('results*.csv'))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot." assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for f in files: for f in files:
try: try:
data = pd.read_csv(f) data = pd.read_csv(f)
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
0.1 * data.values[:, 11])
s = [x.strip() for x in data.columns] s = [x.strip() for x in data.columns]
x = data.values[:, 0] x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]): for i, j in enumerate(index):
y = data.values[:, j] y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values # y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2) ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
if best: ax[i].set_title(s[j], fontsize=12)
# best
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
else:
# last
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
# if j in [8, 9, 10]: # share train and val loss y axes # if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e: except Exception as e:
print(f"Warning: Plotting error for {f}: {e}") print(f'Warning: Plotting error for {f}: {e}')
ax[1].legend() ax[1].legend()
fig.savefig(save_dir / "results.png", dpi=200) fig.savefig(save_dir / 'results.png', dpi=200)
plt.close() plt.close()
@ -334,100 +313,4 @@ def output_to_target(output, max_det=300):
j = torch.full((conf.shape[0], 1), i) j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy() targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6] return targets[:, 0], targets[:, 1], targets[:, 2:]
@threaded
def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
boxes = xywh2xyxy(bboxes[idx]).T
classes = cls[idx].astype('int')
labels = confs is None # labels if no conf column
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
c = classes[j]
color = colors(c)
c = names[c] if names else c
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_results(file='path/to/results.csv', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
for f in files:
try:
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
ax[i].set_title(s[j], fontsize=12)
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print(f'Warning: Plotting error for {f}: {e}')
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()

@ -1,3 +1,3 @@
from ultralytics.yolo.v8.detect.predict import DetectionPredictor, predict from .predict import DetectionPredictor, predict
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train from .train import DetectionTrainer, train
from ultralytics.yolo.v8.detect.val import DetectionValidator, val from .val import DetectionValidator, val

@ -2,18 +2,37 @@ import hydra
import torch import torch
import torch.nn as nn import torch.nn as nn
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import DetectionModel from ultralytics.yolo.utils.modeling.tasks import DetectionModel
from ultralytics.yolo.utils.plotting import plot_images, plot_results from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel from ultralytics.yolo.utils.torch_utils import de_parallel
from ..segment import SegmentationTrainer
from .val import DetectionValidator
# BaseTrainer python usage # BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer): class DetectionTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def set_model_attributes(self):
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
self.args.box *= 3 / nl # scale to layers
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
self.model.names = self.data["names"]
def load_model(self, model_cfg=None, weights=None): def load_model(self, model_cfg=None, weights=None):
model = DetectionModel(model_cfg or weights["model"].yaml, model = DetectionModel(model_cfg or weights["model"].yaml,
@ -27,7 +46,10 @@ class DetectionTrainer(SegmentationTrainer):
return model return model
def get_validator(self): def get_validator(self):
return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args) return v8.detect.DetectionValidator(self.test_loader,
save_dir=self.save_dir,
logger=self.console,
args=self.args)
def criterion(self, preds, batch): def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1] head = de_parallel(self.model).model[-1]

@ -11,7 +11,7 @@ from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_file, check_requirements from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.files import yaml_load from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import ConfusionMatrix, Metric, ap_per_class, box_iou, fitness_detection from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel from ultralytics.yolo.utils.torch_utils import de_parallel
@ -62,7 +62,7 @@ class DetectionValidator(BaseValidator):
self.niou = self.iouv.numel() self.niou = self.iouv.numel()
self.seen = 0 self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc) self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metric() self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
self.loss = torch.zeros(3, device=self.device) self.loss = torch.zeros(3, device=self.device)
self.jdict = [] self.jdict = []
self.stats = [] self.stats = []
@ -128,10 +128,9 @@ class DetectionValidator(BaseValidator):
def get_stats(self): def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any(): if len(stats) and stats[0].any():
results = ap_per_class(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names) self.metrics.process(*stats)
self.metrics.update(results[2:]) self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
self.nt_per_class = np.bincount(stats[3].astype(int), minlength=self.nc) # number of targets per class metrics = {"fitness": self.metrics.fitness()}
metrics = {"fitness": fitness_detection(np.array(self.metrics.mean_results()).reshape(1, -1))}
metrics |= zip(self.metric_keys, self.metrics.mean_results()) metrics |= zip(self.metric_keys, self.metrics.mean_results())
return metrics return metrics
@ -203,8 +202,11 @@ class DetectionValidator(BaseValidator):
def plot_predictions(self, batch, preds, ni): def plot_predictions(self, batch, preds, ni):
images = batch["img"] images = batch["img"]
paths = batch["im_file"] paths = batch["im_file"]
plot_images(images, *output_to_target(preds, max_det=15), paths, self.save_dir / f'val_batch{ni}_pred.jpg', plot_images(images,
self.names) # pred *output_to_target(preds, max_det=15),
paths=paths,
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names) # pred
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)

@ -1,3 +1,3 @@
from ultralytics.yolo.v8.segment.predict import SegmentationPredictor, predict from .predict import SegmentationPredictor, predict
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train from .train import SegmentationTrainer, train
from ultralytics.yolo.v8.segment.val import SegmentationValidator, val from .val import SegmentationValidator, val

@ -4,27 +4,18 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from ultralytics.yolo import v8 from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.plotting import plot_images_and_masks, plot_results_with_masks from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionTrainer
# BaseTrainer python usage
class SegmentationTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch): # BaseTrainer python usage
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 class SegmentationTrainer(DetectionTrainer):
return batch
def load_model(self, model_cfg=None, weights=None): def load_model(self, model_cfg=None, weights=None):
model = SegmentationModel(model_cfg or weights["model"].yaml, model = SegmentationModel(model_cfg or weights["model"].yaml,
@ -37,16 +28,6 @@ class SegmentationTrainer(BaseTrainer):
v.requires_grad = True # train all layers v.requires_grad = True # train all layers
return model return model
def set_model_attributes(self):
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
self.args.box *= 3 / nl # scale to layers
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
self.model.names = self.data["names"]
def get_validator(self): def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader, return v8.segment.SegmentationValidator(self.test_loader,
save_dir=self.save_dir, save_dir=self.save_dir,
@ -245,16 +226,10 @@ class SegmentationTrainer(BaseTrainer):
bboxes = batch["bboxes"] bboxes = batch["bboxes"]
paths = batch["im_file"] paths = batch["im_file"]
batch_idx = batch["batch_idx"] batch_idx = batch["batch_idx"]
plot_images_and_masks(images, plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
batch_idx,
cls,
bboxes,
masks,
paths=paths,
fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self): def plot_metrics(self):
plot_results_with_masks(file=self.csv) # save results.png plot_results(file=self.csv, segment=True) # save results.png
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)

@ -7,17 +7,17 @@ import torch.nn.functional as F
from ultralytics.yolo.data import build_dataloader from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_file, check_requirements from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.files import yaml_load from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou, from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
fitness_segmentation, mask_iou) from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.plotting import output_to_target, plot_images_and_masks
from ultralytics.yolo.utils.torch_utils import de_parallel from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionValidator
class SegmentationValidator(BaseValidator):
class SegmentationValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args) super().__init__(dataloader, save_dir, pbar, logger, args)
@ -65,7 +65,7 @@ class SegmentationValidator(BaseValidator):
self.niou = self.iouv.numel() self.niou = self.iouv.numel()
self.seen = 0 self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc) self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metrics() self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
self.loss = torch.zeros(4, device=self.device) self.loss = torch.zeros(4, device=self.device)
self.jdict = [] self.jdict = []
self.stats = [] self.stats = []
@ -150,16 +150,6 @@ class SegmentationValidator(BaseValidator):
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
''' '''
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
self.metrics.update(results)
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
metrics |= zip(self.metric_keys, self.metrics.mean_results())
return metrics
def print_results(self): def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
@ -218,6 +208,7 @@ class SegmentationValidator(BaseValidator):
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0] return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
# TODO: probably add this to class Metrics
@property @property
def metric_keys(self): def metric_keys(self):
return [ return [
@ -237,7 +228,7 @@ class SegmentationValidator(BaseValidator):
bboxes = batch["bboxes"] bboxes = batch["bboxes"]
paths = batch["im_file"] paths = batch["im_file"]
batch_idx = batch["batch_idx"] batch_idx = batch["batch_idx"]
plot_images_and_masks(images, plot_images(images,
batch_idx, batch_idx,
cls, cls,
bboxes, bboxes,
@ -251,8 +242,7 @@ class SegmentationValidator(BaseValidator):
paths = batch["im_file"] paths = batch["im_file"]
if len(self.plot_masks): if len(self.plot_masks):
plot_masks = torch.cat(self.plot_masks, dim=0) plot_masks = torch.cat(self.plot_masks, dim=0)
batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15) plot_images(images, *output_to_target(preds[0], max_det=15), plot_masks, paths,
plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths,
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
self.plot_masks.clear() self.plot_masks.clear()

Loading…
Cancel
Save