General cleanup (#69)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Laughing
2022-12-08 08:28:13 -06:00
committed by GitHub
parent 7ae45c6cc4
commit d63ee112d4
13 changed files with 265 additions and 433 deletions

View File

@ -2,18 +2,37 @@ import hydra
import torch
import torch.nn as nn
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..segment import SegmentationTrainer
from .val import DetectionValidator
# BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer):
class DetectionTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def set_model_attributes(self):
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
self.args.box *= 3 / nl # scale to layers
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
self.model.names = self.data["names"]
def load_model(self, model_cfg=None, weights=None):
model = DetectionModel(model_cfg or weights["model"].yaml,
@ -27,7 +46,10 @@ class DetectionTrainer(SegmentationTrainer):
return model
def get_validator(self):
return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args)
return v8.detect.DetectionValidator(self.test_loader,
save_dir=self.save_dir,
logger=self.console,
args=self.args)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]