General cleanup (#69)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -521,23 +521,25 @@ class CopyPaste:
|
||||
instances.convert_bbox(format="xyxy")
|
||||
if self.p and len(instances.segments):
|
||||
n = len(instances)
|
||||
h, w, _ = im.shape # height, width, channels
|
||||
_, w, _ = im.shape # height, width, channels
|
||||
im_new = np.zeros(im.shape, np.uint8)
|
||||
j = random.sample(range(n), k=round(self.p * n))
|
||||
c, instance = cls[j], instances[j]
|
||||
instance.fliplr(w)
|
||||
ioa = bbox_ioa(instance.bboxes, instances.bboxes) # intersection over area, (N, M)
|
||||
i = (ioa < 0.30).all(1) # (N, )
|
||||
if i.sum():
|
||||
cls = np.concatenate((cls, c[i]), axis=0)
|
||||
instances = Instances.concatenate((instances, instance[i]), axis=0)
|
||||
cv2.drawContours(im_new, instances.segments[j][i].astype(np.int32), -1, (255, 255, 255), cv2.FILLED)
|
||||
|
||||
result = cv2.bitwise_and(src1=im, src2=im_new)
|
||||
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
||||
i = result > 0 # pixels to replace
|
||||
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
||||
# calculate ioa first then select indexes randomly
|
||||
ins_flip = deepcopy(instances)
|
||||
ins_flip.fliplr(w)
|
||||
|
||||
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M)
|
||||
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
||||
n = len(indexes)
|
||||
for j in random.sample(list(indexes), k=round(self.p * n)):
|
||||
cls = np.concatenate((cls, cls[[j]]), axis=0)
|
||||
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
|
||||
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
|
||||
|
||||
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
||||
i = cv2.flip(im_new, 1).astype(bool)
|
||||
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
||||
|
||||
labels["img"] = im
|
||||
labels["cls"] = cls
|
||||
labels["instances"] = instances
|
||||
|
@ -4,6 +4,7 @@ Top-level YOLO model interface. First principle usage example - https://github.c
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
from ultralytics import yolo
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
||||
|
@ -327,7 +327,7 @@ class BaseTrainer:
|
||||
metrics = self.validator(self)
|
||||
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
|
||||
if not self.best_fitness or self.best_fitness < fitness:
|
||||
self.best_fitness = self.fitness
|
||||
self.best_fitness = fitness
|
||||
return metrics, fitness
|
||||
|
||||
def log(self, text, rank=-1):
|
||||
|
@ -263,18 +263,6 @@ class ConfusionMatrix:
|
||||
print(' '.join(map(str, self.matrix[i])))
|
||||
|
||||
|
||||
def fitness_detection(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def fitness_segmentation(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
|
||||
return (x[:, :8] * w).sum(1)
|
||||
|
||||
|
||||
def smooth(y, f=0.05):
|
||||
# Box filter of fraction f
|
||||
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
||||
@ -422,55 +410,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
|
||||
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
||||
|
||||
|
||||
def ap_per_class_box_and_mask(
|
||||
tp_m,
|
||||
tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=False,
|
||||
save_dir=".",
|
||||
names=(),
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
tp_b: tp of boxes.
|
||||
tp_m: tp of masks.
|
||||
other arguments see `func: ap_per_class`.
|
||||
"""
|
||||
results_boxes = ap_per_class(tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix="Box")[2:]
|
||||
results_masks = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix="Mask")[2:]
|
||||
|
||||
results = {
|
||||
"boxes": {
|
||||
"p": results_boxes[0],
|
||||
"r": results_boxes[1],
|
||||
"f1": results_boxes[2],
|
||||
"ap": results_boxes[3],
|
||||
"ap_class": results_boxes[4]},
|
||||
"masks": {
|
||||
"p": results_masks[0],
|
||||
"r": results_masks[1],
|
||||
"f1": results_masks[2],
|
||||
"ap": results_masks[3],
|
||||
"ap_class": results_masks[4]}}
|
||||
return results
|
||||
|
||||
|
||||
class Metric:
|
||||
|
||||
def __init__(self) -> None:
|
||||
@ -542,6 +481,11 @@ class Metric:
|
||||
maps[c] = self.ap[i]
|
||||
return maps
|
||||
|
||||
def fitness(self):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (np.array(self.mean_results()) * w).sum()
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
@ -555,20 +499,80 @@ class Metric:
|
||||
self.ap_class_index = ap_class_index
|
||||
|
||||
|
||||
class Metrics:
|
||||
"""Metric for boxes and masks."""
|
||||
class DetMetrics:
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
self.plot = plot
|
||||
self.names = names
|
||||
self.metric = Metric()
|
||||
|
||||
def process(self, tp, conf, pred_cls, target_cls):
|
||||
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
|
||||
names=self.names)[2:]
|
||||
self.metric.update(results)
|
||||
|
||||
@property
|
||||
def keys(self):
|
||||
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"]
|
||||
|
||||
def mean_results(self):
|
||||
return self.metric.mean_results()
|
||||
|
||||
def class_result(self, i):
|
||||
return self.metric.class_result(i)
|
||||
|
||||
def get_maps(self, nc):
|
||||
return self.metric.get_maps(nc)
|
||||
|
||||
def fitness(self):
|
||||
return self.metric.fitness()
|
||||
|
||||
@property
|
||||
def ap_class_index(self):
|
||||
return self.metric.ap_class_index
|
||||
|
||||
|
||||
class SegmentMetrics:
|
||||
|
||||
def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
|
||||
self.save_dir = save_dir
|
||||
self.plot = plot
|
||||
self.names = names
|
||||
self.metric_box = Metric()
|
||||
self.metric_mask = Metric()
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
||||
"""
|
||||
self.metric_box.update(list(results["boxes"].values()))
|
||||
self.metric_mask.update(list(results["masks"].values()))
|
||||
def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
|
||||
results_mask = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=self.plot,
|
||||
save_dir=self.save_dir,
|
||||
names=self.names,
|
||||
prefix="Mask")[2:]
|
||||
self.metric_mask.update(results_mask)
|
||||
results_box = ap_per_class(tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=self.plot,
|
||||
save_dir=self.save_dir,
|
||||
names=self.names,
|
||||
prefix="Box")[2:]
|
||||
self.metric_box.update(results_box)
|
||||
|
||||
@property
|
||||
def keys(self):
|
||||
return [
|
||||
"metrics/precision(B)",
|
||||
"metrics/recall(B)",
|
||||
"metrics/mAP_0.5(B)",
|
||||
"metrics/mAP_0.5:0.95(B)", # metrics
|
||||
"metrics/precision(M)",
|
||||
"metrics/recall(M)",
|
||||
"metrics/mAP_0.5(M)",
|
||||
"metrics/mAP_0.5:0.95(M)"]
|
||||
|
||||
def mean_results(self):
|
||||
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
||||
@ -579,6 +583,9 @@ class Metrics:
|
||||
def get_maps(self, nc):
|
||||
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
||||
|
||||
def fitness(self):
|
||||
return self.metric_mask.fitness() + self.metric_box.fitness()
|
||||
|
||||
@property
|
||||
def ap_class_index(self):
|
||||
# boxes and masks have the same ap_class_index
|
||||
|
@ -84,7 +84,7 @@ class Annotator:
|
||||
thickness=tf,
|
||||
lineType=cv2.LINE_AA)
|
||||
|
||||
def masks(self, masks, colors, im_gpu=None, alpha=0.5):
|
||||
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
||||
"""Plot masks at once.
|
||||
Args:
|
||||
masks (tensor): predicted masks on cuda, shape: [n, h, w]
|
||||
@ -95,37 +95,21 @@ class Annotator:
|
||||
if self.pil:
|
||||
# convert to numpy first
|
||||
self.im = np.asarray(self.im).copy()
|
||||
if im_gpu is None:
|
||||
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
|
||||
if len(masks) == 0:
|
||||
return
|
||||
if isinstance(masks, torch.Tensor):
|
||||
masks = torch.as_tensor(masks, dtype=torch.uint8)
|
||||
masks = masks.permute(1, 2, 0).contiguous()
|
||||
masks = masks.cpu().numpy()
|
||||
# masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
|
||||
masks = scale_image(masks.shape[:2], masks, self.im.shape)
|
||||
masks = np.asarray(masks, dtype=np.float32)
|
||||
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
|
||||
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
|
||||
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
|
||||
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
|
||||
else:
|
||||
if len(masks) == 0:
|
||||
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
||||
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
||||
colors = colors[:, None, None] # shape(n,1,1,3)
|
||||
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
||||
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
||||
if len(masks) == 0:
|
||||
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
||||
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
|
||||
colors = colors[:, None, None] # shape(n,1,1,3)
|
||||
masks = masks.unsqueeze(3) # shape(n,h,w,1)
|
||||
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
|
||||
|
||||
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
||||
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
||||
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
|
||||
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
|
||||
|
||||
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||||
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||||
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
||||
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
||||
self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape)
|
||||
im_gpu = im_gpu.flip(dims=[0]) # flip channel
|
||||
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
|
||||
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
|
||||
im_mask = (im_gpu * 255).byte().cpu().numpy()
|
||||
self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
|
||||
if self.pil:
|
||||
# convert im back to PIL and update draw
|
||||
self.fromarray(self.im)
|
||||
@ -186,15 +170,14 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
|
||||
|
||||
|
||||
@threaded
|
||||
def plot_images_and_masks(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks,
|
||||
confs=None,
|
||||
paths=None,
|
||||
fname='images.jpg',
|
||||
names=None):
|
||||
def plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks=np.zeros(0, dtype=np.uint8),
|
||||
paths=None,
|
||||
fname='images.jpg',
|
||||
names=None):
|
||||
# Plot image grid with labels
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
@ -242,10 +225,10 @@ def plot_images_and_masks(images,
|
||||
if len(cls) > 0:
|
||||
idx = batch_idx == i
|
||||
|
||||
boxes = xywh2xyxy(bboxes[idx]).T
|
||||
boxes = xywh2xyxy(bboxes[idx, :4]).T
|
||||
classes = cls[idx].astype('int')
|
||||
labels = confs is None # labels if no conf column
|
||||
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
|
||||
labels = bboxes.shape[1] == 4 # labels if no conf column
|
||||
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
@ -291,126 +274,15 @@ def plot_images_and_masks(images,
|
||||
annotator.im.save(fname) # save
|
||||
|
||||
|
||||
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
|
||||
def plot_results(file='path/to/results.csv', dir='', segment=False):
|
||||
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||||
ax = ax.ravel()
|
||||
files = list(save_dir.glob("results*.csv"))
|
||||
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
||||
for f in files:
|
||||
try:
|
||||
data = pd.read_csv(f)
|
||||
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
|
||||
0.1 * data.values[:, 11])
|
||||
s = [x.strip() for x in data.columns]
|
||||
x = data.values[:, 0]
|
||||
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
|
||||
y = data.values[:, j]
|
||||
# y[y == 0] = np.nan # don't show zero values
|
||||
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
|
||||
if best:
|
||||
# best
|
||||
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
|
||||
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
|
||||
else:
|
||||
# last
|
||||
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
|
||||
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
|
||||
# if j in [8, 9, 10]: # share train and val loss y axes
|
||||
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
except Exception as e:
|
||||
print(f"Warning: Plotting error for {f}: {e}")
|
||||
ax[1].legend()
|
||||
fig.savefig(save_dir / "results.png", dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def output_to_target(output, max_det=300):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
||||
j = torch.full((conf.shape[0], 1), i)
|
||||
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
|
||||
targets = torch.cat(targets, 0).numpy()
|
||||
return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6]
|
||||
|
||||
|
||||
@threaded
|
||||
def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None):
|
||||
# Plot image grid with labels
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = images.cpu().float().numpy()
|
||||
if isinstance(cls, torch.Tensor):
|
||||
cls = cls.cpu().numpy()
|
||||
if isinstance(bboxes, torch.Tensor):
|
||||
bboxes = bboxes.cpu().numpy()
|
||||
if isinstance(batch_idx, torch.Tensor):
|
||||
batch_idx = batch_idx.cpu().numpy()
|
||||
|
||||
max_size = 1920 # max image size
|
||||
max_subplots = 16 # max image subplots, i.e. 4x4
|
||||
bs, _, h, w = images.shape # batch size, _, height, width
|
||||
bs = min(bs, max_subplots) # limit plot images
|
||||
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||
if np.max(images[0]) <= 1:
|
||||
images *= 255 # de-normalise (optional)
|
||||
|
||||
# Build Image
|
||||
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||
for i, im in enumerate(images):
|
||||
if i == max_subplots: # if last batch has fewer images than we expect
|
||||
break
|
||||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||
im = im.transpose(1, 2, 0)
|
||||
mosaic[y:y + h, x:x + w, :] = im
|
||||
|
||||
# Resize (optional)
|
||||
scale = max_size / ns / max(h, w)
|
||||
if scale < 1:
|
||||
h = math.ceil(scale * h)
|
||||
w = math.ceil(scale * w)
|
||||
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
||||
|
||||
# Annotate
|
||||
fs = int((h + w) * ns * 0.01) # font size
|
||||
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
||||
for i in range(i + 1):
|
||||
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
||||
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
||||
if paths:
|
||||
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
||||
if len(cls) > 0:
|
||||
idx = batch_idx == i
|
||||
|
||||
boxes = xywh2xyxy(bboxes[idx]).T
|
||||
classes = cls[idx].astype('int')
|
||||
labels = confs is None # labels if no conf column
|
||||
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
|
||||
|
||||
if boxes.shape[1]:
|
||||
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||
boxes[[0, 2]] *= w # scale to pixels
|
||||
boxes[[1, 3]] *= h
|
||||
elif scale < 1: # absolute coords need scale if image scales
|
||||
boxes *= scale
|
||||
boxes[[0, 2]] += x
|
||||
boxes[[1, 3]] += y
|
||||
for j, box in enumerate(boxes.T.tolist()):
|
||||
c = classes[j]
|
||||
color = colors(c)
|
||||
c = names[c] if names else c
|
||||
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
|
||||
annotator.box_label(box, label, color=color)
|
||||
annotator.im.save(fname) # save
|
||||
|
||||
|
||||
def plot_results(file='path/to/results.csv', dir=''):
|
||||
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
||||
save_dir = Path(file).parent if file else Path(dir)
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||
if segment:
|
||||
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
||||
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
||||
else:
|
||||
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
|
||||
ax = ax.ravel()
|
||||
files = list(save_dir.glob('results*.csv'))
|
||||
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
||||
@ -419,7 +291,7 @@ def plot_results(file='path/to/results.csv', dir=''):
|
||||
data = pd.read_csv(f)
|
||||
s = [x.strip() for x in data.columns]
|
||||
x = data.values[:, 0]
|
||||
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
||||
for i, j in enumerate(index):
|
||||
y = data.values[:, j].astype('float')
|
||||
# y[y == 0] = np.nan # don't show zero values
|
||||
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
||||
@ -431,3 +303,14 @@ def plot_results(file='path/to/results.csv', dir=''):
|
||||
ax[1].legend()
|
||||
fig.savefig(save_dir / 'results.png', dpi=200)
|
||||
plt.close()
|
||||
|
||||
|
||||
def output_to_target(output, max_det=300):
|
||||
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
|
||||
targets = []
|
||||
for i, o in enumerate(output):
|
||||
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
||||
j = torch.full((conf.shape[0], 1), i)
|
||||
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
|
||||
targets = torch.cat(targets, 0).numpy()
|
||||
return targets[:, 0], targets[:, 1], targets[:, 2:]
|
||||
|
@ -1,3 +1,3 @@
|
||||
from ultralytics.yolo.v8.detect.predict import DetectionPredictor, predict
|
||||
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train
|
||||
from ultralytics.yolo.v8.detect.val import DetectionValidator, val
|
||||
from .predict import DetectionPredictor, predict
|
||||
from .train import DetectionTrainer, train
|
||||
from .val import DetectionValidator, val
|
||||
|
@ -2,18 +2,37 @@ import hydra
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
|
||||
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
||||
from ..segment import SegmentationTrainer
|
||||
from .val import DetectionValidator
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class DetectionTrainer(SegmentationTrainer):
|
||||
class DetectionTrainer(BaseTrainer):
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
|
||||
# TODO: manage splits differently
|
||||
# calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
|
||||
return batch
|
||||
|
||||
def set_model_attributes(self):
|
||||
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
self.args.box *= 3 / nl # scale to layers
|
||||
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||
self.model.args = self.args # attach hyperparameters to model
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
model = DetectionModel(model_cfg or weights["model"].yaml,
|
||||
@ -27,7 +46,10 @@ class DetectionTrainer(SegmentationTrainer):
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args)
|
||||
return v8.detect.DetectionValidator(self.test_loader,
|
||||
save_dir=self.save_dir,
|
||||
logger=self.console,
|
||||
args=self.args)
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
head = de_parallel(self.model).model[-1]
|
||||
|
@ -11,7 +11,7 @@ from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, Metric, ap_per_class, box_iou, fitness_detection
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
||||
@ -62,7 +62,7 @@ class DetectionValidator(BaseValidator):
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.metrics = Metric()
|
||||
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
|
||||
self.loss = torch.zeros(3, device=self.device)
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
@ -128,10 +128,9 @@ class DetectionValidator(BaseValidator):
|
||||
def get_stats(self):
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
results = ap_per_class(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
|
||||
self.metrics.update(results[2:])
|
||||
self.nt_per_class = np.bincount(stats[3].astype(int), minlength=self.nc) # number of targets per class
|
||||
metrics = {"fitness": fitness_detection(np.array(self.metrics.mean_results()).reshape(1, -1))}
|
||||
self.metrics.process(*stats)
|
||||
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
|
||||
metrics = {"fitness": self.metrics.fitness()}
|
||||
metrics |= zip(self.metric_keys, self.metrics.mean_results())
|
||||
return metrics
|
||||
|
||||
@ -203,8 +202,11 @@ class DetectionValidator(BaseValidator):
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
images = batch["img"]
|
||||
paths = batch["im_file"]
|
||||
plot_images(images, *output_to_target(preds, max_det=15), paths, self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
self.names) # pred
|
||||
plot_images(images,
|
||||
*output_to_target(preds, max_det=15),
|
||||
paths=paths,
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
|
@ -1,3 +1,3 @@
|
||||
from ultralytics.yolo.v8.segment.predict import SegmentationPredictor, predict
|
||||
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train
|
||||
from ultralytics.yolo.v8.segment.val import SegmentationValidator, val
|
||||
from .predict import SegmentationPredictor, predict
|
||||
from .train import SegmentationTrainer, train
|
||||
from .val import SegmentationValidator, val
|
||||
|
@ -4,27 +4,18 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
|
||||
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
|
||||
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
|
||||
from ultralytics.yolo.utils.plotting import plot_images_and_masks, plot_results_with_masks
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
||||
from ..detect import DetectionTrainer
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class SegmentationTrainer(BaseTrainer):
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
|
||||
# TODO: manage splits differently
|
||||
# calculate stride - check if model is initialized
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
|
||||
return batch
|
||||
class SegmentationTrainer(DetectionTrainer):
|
||||
|
||||
def load_model(self, model_cfg=None, weights=None):
|
||||
model = SegmentationModel(model_cfg or weights["model"].yaml,
|
||||
@ -37,16 +28,6 @@ class SegmentationTrainer(BaseTrainer):
|
||||
v.requires_grad = True # train all layers
|
||||
return model
|
||||
|
||||
def set_model_attributes(self):
|
||||
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
self.args.box *= 3 / nl # scale to layers
|
||||
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||
self.model.args = self.args # attach hyperparameters to model
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def get_validator(self):
|
||||
return v8.segment.SegmentationValidator(self.test_loader,
|
||||
save_dir=self.save_dir,
|
||||
@ -245,16 +226,10 @@ class SegmentationTrainer(BaseTrainer):
|
||||
bboxes = batch["bboxes"]
|
||||
paths = batch["im_file"]
|
||||
batch_idx = batch["batch_idx"]
|
||||
plot_images_and_masks(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks,
|
||||
paths=paths,
|
||||
fname=self.save_dir / f"train_batch{ni}.jpg")
|
||||
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
|
||||
|
||||
def plot_metrics(self):
|
||||
plot_results_with_masks(file=self.csv) # save results.png
|
||||
plot_results(file=self.csv, segment=True) # save results.png
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
|
@ -7,17 +7,17 @@ import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_file, check_requirements
|
||||
from ultralytics.yolo.utils.files import yaml_load
|
||||
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
|
||||
fitness_segmentation, mask_iou)
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images_and_masks
|
||||
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
||||
from ..detect import DetectionValidator
|
||||
|
||||
class SegmentationValidator(BaseValidator):
|
||||
|
||||
class SegmentationValidator(DetectionValidator):
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
|
||||
super().__init__(dataloader, save_dir, pbar, logger, args)
|
||||
@ -65,7 +65,7 @@ class SegmentationValidator(BaseValidator):
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.metrics = Metrics()
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
|
||||
self.loss = torch.zeros(4, device=self.device)
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
@ -150,16 +150,6 @@ class SegmentationValidator(BaseValidator):
|
||||
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||
'''
|
||||
|
||||
def get_stats(self):
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
|
||||
self.metrics.update(results)
|
||||
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
|
||||
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
|
||||
metrics |= zip(self.metric_keys, self.metrics.mean_results())
|
||||
return metrics
|
||||
|
||||
def print_results(self):
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
||||
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
@ -218,6 +208,7 @@ class SegmentationValidator(BaseValidator):
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
|
||||
|
||||
# TODO: probably add this to class Metrics
|
||||
@property
|
||||
def metric_keys(self):
|
||||
return [
|
||||
@ -237,23 +228,22 @@ class SegmentationValidator(BaseValidator):
|
||||
bboxes = batch["bboxes"]
|
||||
paths = batch["im_file"]
|
||||
batch_idx = batch["batch_idx"]
|
||||
plot_images_and_masks(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks,
|
||||
paths=paths,
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names)
|
||||
plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
masks,
|
||||
paths=paths,
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
images = batch["img"]
|
||||
paths = batch["im_file"]
|
||||
if len(self.plot_masks):
|
||||
plot_masks = torch.cat(self.plot_masks, dim=0)
|
||||
batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15)
|
||||
plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths,
|
||||
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
|
||||
plot_images(images, *output_to_target(preds[0], max_det=15), plot_masks, paths,
|
||||
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
|
||||
self.plot_masks.clear()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user