General cleanup (#69)

Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Laughing
2022-12-08 08:28:13 -06:00
committed by GitHub
parent 7ae45c6cc4
commit d63ee112d4
13 changed files with 265 additions and 433 deletions

View File

@ -1,8 +1,12 @@
import cv2
import hydra
import numpy as np
from omegaconf import OmegaConf
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.utils import ROOT
from ultralytics.yolo.utils.plotting import plot_images
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class Colors:
@ -51,47 +55,34 @@ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
)
with open("ultralytics/tests/data/dataloader/hyp_test.yaml") as f:
hyp = OmegaConf.load(f)
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def test(cfg):
cfg.task = "detect"
cfg.mode = "train"
dataloader, _ = build_dataloader(
cfg=cfg,
batch_size=4,
img_path="/d/dataset/COCO/coco128-seg/images",
stride=32,
label_path=None,
mode=cfg.mode,
)
dataloader, dataset = build_dataloader(
img_path="/d/dataset/COCO/coco128-seg/images",
img_size=640,
label_path=None,
cache=False,
hyp=hyp,
augment=False,
prefix="",
rect=False,
batch_size=4,
stride=32,
pad=0.5,
use_segments=True,
use_keypoints=False,
)
for d in dataloader:
images = d["img"]
cls = d["cls"].squeeze(-1)
bboxes = d["bboxes"]
paths = d["im_file"]
batch_idx = d["batch_idx"]
result = plot_images(images, batch_idx, cls, bboxes, paths=paths)
for d in dataloader:
idx = 1 # show which image inside one batch
img = d["img"][idx].numpy()
img = np.ascontiguousarray(img.transpose(1, 2, 0))
ih, iw = img.shape[:2]
# print(img.shape)
bidx = d["batch_idx"]
cls = d["cls"][bidx == idx].numpy()
bboxes = d["bboxes"][bidx == idx].numpy()
print(bboxes.shape)
bboxes[:, [0, 2]] *= iw
bboxes[:, [1, 3]] *= ih
nl = len(cls)
cv2.imshow("p", result)
if cv2.waitKey(0) == ord("q"):
break
for i, b in enumerate(bboxes):
x, y, w, h = b
x1 = x - w / 2
x2 = x + w / 2
y1 = y - h / 2
y2 = y + h / 2
c = int(cls[i][0])
plot_one_box([int(x1), int(y1), int(x2), int(y2)], img, label=f"{c}", color=colors(c))
cv2.imshow("p", img)
if cv2.waitKey(0) == ord("q"):
break
if __name__ == "__main__":
test()
# test(augment=True, rect=False)
# test(augment=False, rect=True)
# test(augment=False, rect=False)

View File

@ -1,9 +1,11 @@
import cv2
import numpy as np
import torch
from omegaconf import OmegaConf
import hydra
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.utils import ROOT
from ultralytics.yolo.utils.plotting import plot_images
DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml"
class Colors:
@ -52,77 +54,34 @@ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
)
with open("ultralytics/tests/data/dataloader/hyp_test.yaml") as f:
hyp = OmegaConf.load(f)
def test(augment, rect):
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def test(cfg):
cfg.task = "segment"
cfg.mode = "train"
dataloader, _ = build_dataloader(
img_path="/d/dataset/COCO/coco128-seg/images",
img_size=640,
label_path=None,
cache=False,
hyp=hyp,
augment=augment,
prefix="",
rect=rect,
cfg=cfg,
batch_size=4,
img_path="/d/dataset/COCO/coco128-seg/images",
stride=32,
pad=0.5,
use_segments=True,
use_keypoints=False,
label_path=None,
mode=cfg.mode,
)
for d in dataloader:
# info
im_file = d["im_file"]
ori_shape = d["ori_shape"]
resize_shape = d["resized_shape"]
print(ori_shape, resize_shape)
print(im_file)
# labels
idx = 1 # show which image inside one batch
img = d["img"][idx].numpy()
img = np.ascontiguousarray(img.transpose(1, 2, 0))
ih, iw = img.shape[:2]
# print(img.shape)
bidx = d["batch_idx"]
cls = d["cls"][bidx == idx].numpy()
bboxes = d["bboxes"][bidx == idx].numpy()
masks = d["masks"][idx]
print(bboxes.shape)
bboxes[:, [0, 2]] *= iw
bboxes[:, [1, 3]] *= ih
nl = len(cls)
index = torch.arange(nl).view(nl, 1, 1) + 1
masks = masks.repeat(nl, 1, 1)
# print(masks.shape, index.shape)
masks = torch.where(masks == index, 1, 0)
masks = masks.numpy().astype(np.uint8)
print(masks.shape)
# keypoints = d["keypoints"]
for i, b in enumerate(bboxes):
x, y, w, h = b
x1 = x - w / 2
x2 = x + w / 2
y1 = y - h / 2
y2 = y + h / 2
c = int(cls[i][0])
# print(x1, y1, x2, y2)
plot_one_box([int(x1), int(y1), int(x2), int(y2)], img, label=f"{c}", color=colors(c))
mask = masks[i]
mask = cv2.resize(mask, (iw, ih))
mask = mask.astype(bool)
img[mask] = img[mask] * 0.5 + np.array(colors(c)) * 0.5
cv2.imshow("p", img)
images = d["img"]
masks = d["masks"]
cls = d["cls"].squeeze(-1)
bboxes = d["bboxes"]
paths = d["im_file"]
batch_idx = d["batch_idx"]
result = plot_images(images, batch_idx, cls, bboxes, masks, paths=paths)
cv2.imshow("p", result)
if cv2.waitKey(0) == ord("q"):
break
if __name__ == "__main__":
test(augment=True, rect=False)
test(augment=False, rect=True)
test(augment=False, rect=False)
test()
# test(augment=True, rect=False)
# test(augment=False, rect=True)
# test(augment=False, rect=False)

View File

@ -521,23 +521,25 @@ class CopyPaste:
instances.convert_bbox(format="xyxy")
if self.p and len(instances.segments):
n = len(instances)
h, w, _ = im.shape # height, width, channels
_, w, _ = im.shape # height, width, channels
im_new = np.zeros(im.shape, np.uint8)
j = random.sample(range(n), k=round(self.p * n))
c, instance = cls[j], instances[j]
instance.fliplr(w)
ioa = bbox_ioa(instance.bboxes, instances.bboxes) # intersection over area, (N, M)
i = (ioa < 0.30).all(1) # (N, )
if i.sum():
cls = np.concatenate((cls, c[i]), axis=0)
instances = Instances.concatenate((instances, instance[i]), axis=0)
cv2.drawContours(im_new, instances.segments[j][i].astype(np.int32), -1, (255, 255, 255), cv2.FILLED)
result = cv2.bitwise_and(src1=im, src2=im_new)
result = cv2.flip(result, 1) # augment segments (flip left-right)
i = result > 0 # pixels to replace
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
# calculate ioa first then select indexes randomly
ins_flip = deepcopy(instances)
ins_flip.fliplr(w)
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M)
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
n = len(indexes)
for j in random.sample(list(indexes), k=round(self.p * n)):
cls = np.concatenate((cls, cls[[j]]), axis=0)
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
result = cv2.flip(im, 1) # augment segments (flip left-right)
i = cv2.flip(im_new, 1).astype(bool)
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
labels["img"] = im
labels["cls"] = cls
labels["instances"] = instances

View File

@ -4,6 +4,7 @@ Top-level YOLO model interface. First principle usage example - https://github.c
import torch
import yaml
from ultralytics import yolo
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.modeling import attempt_load_weights

View File

@ -327,7 +327,7 @@ class BaseTrainer:
metrics = self.validator(self)
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = self.fitness
self.best_fitness = fitness
return metrics, fitness
def log(self, text, rank=-1):

View File

@ -263,18 +263,6 @@ class ConfusionMatrix:
print(' '.join(map(str, self.matrix[i])))
def fitness_detection(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (x[:, :4] * w).sum(1)
def fitness_segmentation(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
return (x[:, :8] * w).sum(1)
def smooth(y, f=0.05):
# Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
@ -422,55 +410,6 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
def ap_per_class_box_and_mask(
tp_m,
tp_b,
conf,
pred_cls,
target_cls,
plot=False,
save_dir=".",
names=(),
):
"""
Args:
tp_b: tp of boxes.
tp_m: tp of masks.
other arguments see `func: ap_per_class`.
"""
results_boxes = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Box")[2:]
results_masks = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=plot,
save_dir=save_dir,
names=names,
prefix="Mask")[2:]
results = {
"boxes": {
"p": results_boxes[0],
"r": results_boxes[1],
"f1": results_boxes[2],
"ap": results_boxes[3],
"ap_class": results_boxes[4]},
"masks": {
"p": results_masks[0],
"r": results_masks[1],
"f1": results_masks[2],
"ap": results_masks[3],
"ap_class": results_masks[4]}}
return results
class Metric:
def __init__(self) -> None:
@ -542,6 +481,11 @@ class Metric:
maps[c] = self.ap[i]
return maps
def fitness(self):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (np.array(self.mean_results()) * w).sum()
def update(self, results):
"""
Args:
@ -555,20 +499,80 @@ class Metric:
self.ap_class_index = ap_class_index
class Metrics:
"""Metric for boxes and masks."""
class DetMetrics:
def __init__(self) -> None:
def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.metric = Metric()
def process(self, tp, conf, pred_cls, target_cls):
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
names=self.names)[2:]
self.metric.update(results)
@property
def keys(self):
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP_0.5(B)", "metrics/mAP_0.5:0.95(B)"]
def mean_results(self):
return self.metric.mean_results()
def class_result(self, i):
return self.metric.class_result(i)
def get_maps(self, nc):
return self.metric.get_maps(nc)
def fitness(self):
return self.metric.fitness()
@property
def ap_class_index(self):
return self.metric.ap_class_index
class SegmentMetrics:
def __init__(self, save_dir=Path("."), plot=False, names=()) -> None:
self.save_dir = save_dir
self.plot = plot
self.names = names
self.metric_box = Metric()
self.metric_mask = Metric()
def update(self, results):
"""
Args:
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
"""
self.metric_box.update(list(results["boxes"].values()))
self.metric_mask.update(list(results["masks"].values()))
def process(self, tp_m, tp_b, conf, pred_cls, target_cls):
results_mask = ap_per_class(tp_m,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix="Mask")[2:]
self.metric_mask.update(results_mask)
results_box = ap_per_class(tp_b,
conf,
pred_cls,
target_cls,
plot=self.plot,
save_dir=self.save_dir,
names=self.names,
prefix="Box")[2:]
self.metric_box.update(results_box)
@property
def keys(self):
return [
"metrics/precision(B)",
"metrics/recall(B)",
"metrics/mAP_0.5(B)",
"metrics/mAP_0.5:0.95(B)", # metrics
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP_0.5(M)",
"metrics/mAP_0.5:0.95(M)"]
def mean_results(self):
return self.metric_box.mean_results() + self.metric_mask.mean_results()
@ -579,6 +583,9 @@ class Metrics:
def get_maps(self, nc):
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
def fitness(self):
return self.metric_mask.fitness() + self.metric_box.fitness()
@property
def ap_class_index(self):
# boxes and masks have the same ap_class_index

View File

@ -84,7 +84,7 @@ class Annotator:
thickness=tf,
lineType=cv2.LINE_AA)
def masks(self, masks, colors, im_gpu=None, alpha=0.5):
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
"""Plot masks at once.
Args:
masks (tensor): predicted masks on cuda, shape: [n, h, w]
@ -95,37 +95,21 @@ class Annotator:
if self.pil:
# convert to numpy first
self.im = np.asarray(self.im).copy()
if im_gpu is None:
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
if len(masks) == 0:
return
if isinstance(masks, torch.Tensor):
masks = torch.as_tensor(masks, dtype=torch.uint8)
masks = masks.permute(1, 2, 0).contiguous()
masks = masks.cpu().numpy()
# masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
masks = scale_image(masks.shape[:2], masks, self.im.shape)
masks = np.asarray(masks, dtype=np.float32)
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
else:
if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
colors = colors[:, None, None] # shape(n,1,1,3)
masks = masks.unsqueeze(3) # shape(n,h,w,1)
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
if len(masks) == 0:
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
colors = colors[:, None, None] # shape(n,1,1,3)
masks = masks.unsqueeze(3) # shape(n,h,w,1)
masks_color = masks * (colors * alpha) # shape(n,h,w,3)
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1)
mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3)
im_gpu = im_gpu.flip(dims=[0]) # flip channel
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
im_mask = (im_gpu * 255).byte().cpu().numpy()
self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape)
im_gpu = im_gpu.flip(dims=[0]) # flip channel
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3)
im_gpu = im_gpu * inv_alph_masks[-1] + mcs
im_mask = (im_gpu * 255).byte().cpu().numpy()
self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
if self.pil:
# convert im back to PIL and update draw
self.fromarray(self.im)
@ -186,15 +170,14 @@ def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False,
@threaded
def plot_images_and_masks(images,
batch_idx,
cls,
bboxes,
masks,
confs=None,
paths=None,
fname='images.jpg',
names=None):
def plot_images(images,
batch_idx,
cls,
bboxes,
masks=np.zeros(0, dtype=np.uint8),
paths=None,
fname='images.jpg',
names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
@ -242,10 +225,10 @@ def plot_images_and_masks(images,
if len(cls) > 0:
idx = batch_idx == i
boxes = xywh2xyxy(bboxes[idx]).T
boxes = xywh2xyxy(bboxes[idx, :4]).T
classes = cls[idx].astype('int')
labels = confs is None # labels if no conf column
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
labels = bboxes.shape[1] == 4 # labels if no conf column
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
@ -291,126 +274,15 @@ def plot_images_and_masks(images,
annotator.im.save(fname) # save
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
def plot_results(file='path/to/results.csv', dir='', segment=False):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
ax = ax.ravel()
files = list(save_dir.glob("results*.csv"))
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
for f in files:
try:
data = pd.read_csv(f)
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
0.1 * data.values[:, 11])
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
y = data.values[:, j]
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
if best:
# best
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
else:
# last
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
# if j in [8, 9, 10]: # share train and val loss y axes
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
except Exception as e:
print(f"Warning: Plotting error for {f}: {e}")
ax[1].legend()
fig.savefig(save_dir / "results.png", dpi=200)
plt.close()
def output_to_target(output, max_det=300):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:6], targets[:, 6]
@threaded
def plot_images(images, batch_idx, cls, bboxes, confs=None, paths=None, fname='images.jpg', names=None):
# Plot image grid with labels
if isinstance(images, torch.Tensor):
images = images.cpu().float().numpy()
if isinstance(cls, torch.Tensor):
cls = cls.cpu().numpy()
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.cpu().numpy()
if isinstance(batch_idx, torch.Tensor):
batch_idx = batch_idx.cpu().numpy()
max_size = 1920 # max image size
max_subplots = 16 # max image subplots, i.e. 4x4
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
if np.max(images[0]) <= 1:
images *= 255 # de-normalise (optional)
# Build Image
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
for i, im in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
im = im.transpose(1, 2, 0)
mosaic[y:y + h, x:x + w, :] = im
# Resize (optional)
scale = max_size / ns / max(h, w)
if scale < 1:
h = math.ceil(scale * h)
w = math.ceil(scale * w)
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
# Annotate
fs = int((h + w) * ns * 0.01) # font size
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
for i in range(i + 1):
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
if paths:
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
if len(cls) > 0:
idx = batch_idx == i
boxes = xywh2xyxy(bboxes[idx]).T
classes = cls[idx].astype('int')
labels = confs is None # labels if no conf column
conf = None if labels else confs[idx] # check for confidence presence (label vs pred)
if boxes.shape[1]:
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
boxes[[0, 2]] *= w # scale to pixels
boxes[[1, 3]] *= h
elif scale < 1: # absolute coords need scale if image scales
boxes *= scale
boxes[[0, 2]] += x
boxes[[1, 3]] += y
for j, box in enumerate(boxes.T.tolist()):
c = classes[j]
color = colors(c)
c = names[c] if names else c
if labels or conf[j] > 0.25: # 0.25 conf thresh
label = f'{c}' if labels else f'{c} {conf[j]:.1f}'
annotator.box_label(box, label, color=color)
annotator.im.save(fname) # save
def plot_results(file='path/to/results.csv', dir=''):
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
save_dir = Path(file).parent if file else Path(dir)
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
if segment:
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
else:
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
ax = ax.ravel()
files = list(save_dir.glob('results*.csv'))
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
@ -419,7 +291,7 @@ def plot_results(file='path/to/results.csv', dir=''):
data = pd.read_csv(f)
s = [x.strip() for x in data.columns]
x = data.values[:, 0]
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
for i, j in enumerate(index):
y = data.values[:, j].astype('float')
# y[y == 0] = np.nan # don't show zero values
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
@ -431,3 +303,14 @@ def plot_results(file='path/to/results.csv', dir=''):
ax[1].legend()
fig.savefig(save_dir / 'results.png', dpi=200)
plt.close()
def output_to_target(output, max_det=300):
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
targets = []
for i, o in enumerate(output):
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
j = torch.full((conf.shape[0], 1), i)
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
targets = torch.cat(targets, 0).numpy()
return targets[:, 0], targets[:, 1], targets[:, 2:]

View File

@ -1,3 +1,3 @@
from ultralytics.yolo.v8.detect.predict import DetectionPredictor, predict
from ultralytics.yolo.v8.detect.train import DetectionTrainer, train
from ultralytics.yolo.v8.detect.val import DetectionValidator, val
from .predict import DetectionPredictor, predict
from .train import DetectionTrainer, train
from .val import DetectionValidator, val

View File

@ -2,18 +2,37 @@ import hydra
import torch
import torch.nn as nn
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import DetectionModel
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..segment import SegmentationTrainer
from .val import DetectionValidator
# BaseTrainer python usage
class DetectionTrainer(SegmentationTrainer):
class DetectionTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
def set_model_attributes(self):
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
self.args.box *= 3 / nl # scale to layers
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
self.model.names = self.data["names"]
def load_model(self, model_cfg=None, weights=None):
model = DetectionModel(model_cfg or weights["model"].yaml,
@ -27,7 +46,10 @@ class DetectionTrainer(SegmentationTrainer):
return model
def get_validator(self):
return DetectionValidator(self.test_loader, save_dir=self.save_dir, logger=self.console, args=self.args)
return v8.detect.DetectionValidator(self.test_loader,
save_dir=self.save_dir,
logger=self.console,
args=self.args)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]

View File

@ -11,7 +11,7 @@ from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import ConfusionMatrix, Metric, ap_per_class, box_iou, fitness_detection
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
@ -62,7 +62,7 @@ class DetectionValidator(BaseValidator):
self.niou = self.iouv.numel()
self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metric()
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
self.loss = torch.zeros(3, device=self.device)
self.jdict = []
self.stats = []
@ -128,10 +128,9 @@ class DetectionValidator(BaseValidator):
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
results = ap_per_class(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
self.metrics.update(results[2:])
self.nt_per_class = np.bincount(stats[3].astype(int), minlength=self.nc) # number of targets per class
metrics = {"fitness": fitness_detection(np.array(self.metrics.mean_results()).reshape(1, -1))}
self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
metrics = {"fitness": self.metrics.fitness()}
metrics |= zip(self.metric_keys, self.metrics.mean_results())
return metrics
@ -203,8 +202,11 @@ class DetectionValidator(BaseValidator):
def plot_predictions(self, batch, preds, ni):
images = batch["img"]
paths = batch["im_file"]
plot_images(images, *output_to_target(preds, max_det=15), paths, self.save_dir / f'val_batch{ni}_pred.jpg',
self.names) # pred
plot_images(images,
*output_to_target(preds, max_det=15),
paths=paths,
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names) # pred
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)

View File

@ -1,3 +1,3 @@
from ultralytics.yolo.v8.segment.predict import SegmentationPredictor, predict
from ultralytics.yolo.v8.segment.train import SegmentationTrainer, train
from ultralytics.yolo.v8.segment.val import SegmentationValidator, val
from .predict import SegmentationPredictor, predict
from .train import SegmentationTrainer, train
from .val import SegmentationValidator, val

View File

@ -4,27 +4,18 @@ import torch.nn as nn
import torch.nn.functional as F
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.plotting import plot_images_and_masks, plot_results_with_masks
from ultralytics.yolo.utils.plotting import plot_images, plot_results
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionTrainer
# BaseTrainer python usage
class SegmentationTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
return batch
class SegmentationTrainer(DetectionTrainer):
def load_model(self, model_cfg=None, weights=None):
model = SegmentationModel(model_cfg or weights["model"].yaml,
@ -37,16 +28,6 @@ class SegmentationTrainer(BaseTrainer):
v.requires_grad = True # train all layers
return model
def set_model_attributes(self):
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
self.args.box *= 3 / nl # scale to layers
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
self.model.nc = self.data["nc"] # attach number of classes to model
self.model.args = self.args # attach hyperparameters to model
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
self.model.names = self.data["names"]
def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader,
save_dir=self.save_dir,
@ -245,16 +226,10 @@ class SegmentationTrainer(BaseTrainer):
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images_and_masks(images,
batch_idx,
cls,
bboxes,
masks,
paths=paths,
fname=self.save_dir / f"train_batch{ni}.jpg")
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self):
plot_results_with_masks(file=self.csv) # save results.png
plot_results(file=self.csv, segment=True) # save results.png
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)

View File

@ -7,17 +7,17 @@ import torch.nn.functional as F
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import ops
from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.files import yaml_load
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
fitness_segmentation, mask_iou)
from ultralytics.yolo.utils.plotting import output_to_target, plot_images_and_masks
from ultralytics.yolo.utils.metrics import ConfusionMatrix, SegmentMetrics, box_iou, mask_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
from ..detect import DetectionValidator
class SegmentationValidator(BaseValidator):
class SegmentationValidator(DetectionValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
@ -65,7 +65,7 @@ class SegmentationValidator(BaseValidator):
self.niou = self.iouv.numel()
self.seen = 0
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.metrics = Metrics()
self.metrics = SegmentMetrics(save_dir=self.save_dir, plot=self.args.plots, names=self.names)
self.loss = torch.zeros(4, device=self.device)
self.jdict = []
self.stats = []
@ -150,16 +150,6 @@ class SegmentationValidator(BaseValidator):
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
'''
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir=self.save_dir, names=self.names)
self.metrics.update(results)
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
metrics |= zip(self.metric_keys, self.metrics.mean_results())
return metrics
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
@ -218,6 +208,7 @@ class SegmentationValidator(BaseValidator):
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
# TODO: probably add this to class Metrics
@property
def metric_keys(self):
return [
@ -237,23 +228,22 @@ class SegmentationValidator(BaseValidator):
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images_and_masks(images,
batch_idx,
cls,
bboxes,
masks,
paths=paths,
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)
plot_images(images,
batch_idx,
cls,
bboxes,
masks,
paths=paths,
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)
def plot_predictions(self, batch, preds, ni):
images = batch["img"]
paths = batch["im_file"]
if len(self.plot_masks):
plot_masks = torch.cat(self.plot_masks, dim=0)
batch_idx, cls, bboxes, conf = output_to_target(preds[0], max_det=15)
plot_images_and_masks(images, batch_idx, cls, bboxes, plot_masks, conf, paths,
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
plot_images(images, *output_to_target(preds[0], max_det=15), plot_masks, paths,
self.save_dir / f'val_batch{ni}_pred.jpg', self.names) # pred
self.plot_masks.clear()