ultralytics 8.0.154 add freeze training argument (#4329)

This commit is contained in:
Glenn Jocher
2023-08-14 00:18:32 +02:00
committed by GitHub
parent 9f6d48d3cf
commit d47718c367
6 changed files with 120 additions and 98 deletions

View File

@ -207,11 +207,28 @@ class BaseTrainer:
"""
Builds dataloaders and optimizer on correct rank process.
"""
# Model
self.run_callbacks('on_pretrain_routine_start')
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
# Freeze layers
freeze_list = self.args.freeze if isinstance(
self.args.freeze, list) else range(self.args.freeze) if isinstance(self.args.freeze, int) else []
always_freeze_names = ['.dfl'] # always freeze these layers
freeze_layer_names = [f'model.{x}.' for x in freeze_list] + always_freeze_names
for k, v in self.model.named_parameters():
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if any(x in k for x in freeze_layer_names):
LOGGER.info(f"Freezing layer '{k}'")
v.requires_grad = False
elif not v.requires_grad:
LOGGER.info(f"WARNING ⚠️ setting 'requires_grad=True' for frozen layer '{k}'. "
'See ultralytics.engine.trainer for customization of frozen layers.')
v.requires_grad = True
# Check AMP
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
@ -224,9 +241,11 @@ class BaseTrainer:
self.scaler = amp.GradScaler(enabled=self.amp)
if world_size > 1:
self.model = DDP(self.model, device_ids=[RANK])
# Check imgsz
gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride)
self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
# Batch size
if self.batch_size == -1:
if RANK == -1: # single-GPU only, estimate best batch size
@ -272,7 +291,6 @@ class BaseTrainer:
"""Train completed, evaluate and plot if specified by arguments."""
if world_size > 1:
self._setup_ddp(world_size)
self._setup_train(world_size)
self.epoch_time = None