ultralytics 8.0.97
confusion matrix, windows, docs updates (#2511)
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Dowon <ks2515@naver.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Dynamically adjusts input size to optimize GPU memory usage during training. Learn how to use check_train_batch_size with Ultralytics YOLO.
|
||||
---
|
||||
|
||||
# check_train_batch_size
|
||||
---
|
||||
:::ultralytics.yolo.utils.autobatch.check_train_batch_size
|
||||
@ -6,4 +10,4 @@
|
||||
# autobatch
|
||||
---
|
||||
:::ultralytics.yolo.utils.autobatch.autobatch
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,8 @@
|
||||
---
|
||||
description: Improve your YOLO's performance and measure its speed. Benchmark utility for YOLOv5.
|
||||
---
|
||||
|
||||
# benchmark
|
||||
---
|
||||
:::ultralytics.yolo.utils.benchmarks.benchmark
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn about YOLO's callback functions from on_train_start to add_integration_callbacks. See how these callbacks modify and save models.
|
||||
---
|
||||
|
||||
# on_pretrain_routine_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
|
||||
@ -131,4 +135,4 @@
|
||||
# add_integration_callbacks
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Improve your YOLOv5 model training with callbacks from ClearML. Learn about log debug samples, pre-training routines, validation and more.
|
||||
---
|
||||
|
||||
# _log_debug_samples
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
|
||||
@ -31,4 +35,4 @@
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn about YOLO callbacks using the Comet.ml platform, enhancing object detection training and testing with custom logging and visualizations.
|
||||
---
|
||||
|
||||
# _get_comet_mode
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.comet._get_comet_mode
|
||||
@ -116,4 +120,4 @@
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.comet.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Improve YOLOv5 model training with Ultralytics' on-train callbacks. Boost performance on-pretrain-routine-end, model-save, train/predict start.
|
||||
---
|
||||
|
||||
# on_pretrain_routine_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
|
||||
@ -36,4 +40,4 @@
|
||||
# on_export_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.hub.on_export_start
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Track model performance and metrics with MLflow in YOLOv5. Use callbacks like on_pretrain_routine_end or on_train_end to log information.
|
||||
---
|
||||
|
||||
# on_pretrain_routine_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
|
||||
@ -11,4 +15,4 @@
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Improve YOLOv5 training with Neptune, a powerful logging tool. Track metrics like images, plots, and epochs for better model performance.
|
||||
---
|
||||
|
||||
# _log_scalars
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.neptune._log_scalars
|
||||
@ -36,4 +40,4 @@
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,8 @@
|
||||
---
|
||||
description: '"Improve YOLO model performance with on_fit_epoch_end callback. Learn to integrate with Ray Tune for hyperparameter tuning. Ultralytics YOLO docs."'
|
||||
---
|
||||
|
||||
# on_fit_epoch_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn how to monitor the training process with Tensorboard using Ultralytics YOLO's "_log_scalars" and "on_batch_end" methods.
|
||||
---
|
||||
|
||||
# _log_scalars
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
|
||||
@ -16,4 +20,4 @@
|
||||
# on_fit_epoch_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain_routine_start` and `on_train_epoch_end` for improved training performance.
|
||||
---
|
||||
|
||||
# on_pretrain_routine_start
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
|
||||
@ -16,4 +20,4 @@
|
||||
# on_train_end
|
||||
---
|
||||
:::ultralytics.yolo.utils.callbacks.wb.on_train_end
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: 'Check functions for YOLO utils: image size, version, font, requirements, filename suffix, YAML file, YOLO, and Git version.'
|
||||
---
|
||||
|
||||
# is_ascii
|
||||
---
|
||||
:::ultralytics.yolo.utils.checks.is_ascii
|
||||
@ -76,4 +80,4 @@
|
||||
# print_args
|
||||
---
|
||||
:::ultralytics.yolo.utils.checks.print_args
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn how to find free network port and generate DDP (Distributed Data Parallel) command in Ultralytics YOLO with easy examples.
|
||||
---
|
||||
|
||||
# find_free_network_port
|
||||
---
|
||||
:::ultralytics.yolo.utils.dist.find_free_network_port
|
||||
@ -16,4 +20,4 @@
|
||||
# ddp_cleanup
|
||||
---
|
||||
:::ultralytics.yolo.utils.dist.ddp_cleanup
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs utils.downloads.unzip_file, checks disk space, downloads and attempts assets.
|
||||
---
|
||||
|
||||
# is_url
|
||||
---
|
||||
:::ultralytics.yolo.utils.downloads.is_url
|
||||
@ -26,4 +30,4 @@
|
||||
# download
|
||||
---
|
||||
:::ultralytics.yolo.utils.downloads.download
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,4 +1,8 @@
|
||||
---
|
||||
description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the error and get the most out of your YOLO model.
|
||||
---
|
||||
|
||||
# HUBModelError
|
||||
---
|
||||
:::ultralytics.yolo.utils.errors.HUBModelError
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: 'Learn about Ultralytics YOLO files and directory utilities: WorkingDirectory, file_age, file_size, and make_dirs.'
|
||||
---
|
||||
|
||||
# WorkingDirectory
|
||||
---
|
||||
:::ultralytics.yolo.utils.files.WorkingDirectory
|
||||
@ -31,4 +35,4 @@
|
||||
# make_dirs
|
||||
---
|
||||
:::ultralytics.yolo.utils.files.make_dirs
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO for object detection. Improve accuracy and speed with these powerful tools.
|
||||
---
|
||||
|
||||
# Bboxes
|
||||
---
|
||||
:::ultralytics.yolo.utils.instance.Bboxes
|
||||
@ -11,4 +15,4 @@
|
||||
# _ntuple
|
||||
---
|
||||
:::ultralytics.yolo.utils.instance._ntuple
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO for advanced bounding box and pose estimation. Visit our docs for more.
|
||||
---
|
||||
|
||||
# VarifocalLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.VarifocalLoss
|
||||
@ -11,4 +15,4 @@
|
||||
# KeypointLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.KeypointLoss
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, ClassifyMetrics, and more with Ultralytics Metrics documentation.
|
||||
---
|
||||
|
||||
# FocalLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.metrics.FocalLoss
|
||||
@ -91,4 +95,4 @@
|
||||
# ap_per_class
|
||||
---
|
||||
:::ultralytics.yolo.utils.metrics.ap_per_class
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Learn about various utility functions in Ultralytics YOLO, including x, y, width, height conversions, non-max suppression, and more.
|
||||
---
|
||||
|
||||
# Profile
|
||||
---
|
||||
:::ultralytics.yolo.utils.ops.Profile
|
||||
@ -131,4 +135,4 @@
|
||||
# clean_str
|
||||
---
|
||||
:::ultralytics.yolo.utils.ops.clean_str
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: 'Discover the power of YOLO''s plotting functions: Colors, Labels and Images. Code examples to output targets and visualize features. Check it now.'
|
||||
---
|
||||
|
||||
# Colors
|
||||
---
|
||||
:::ultralytics.yolo.utils.plotting.Colors
|
||||
@ -36,4 +40,4 @@
|
||||
# feature_visualization
|
||||
---
|
||||
:::ultralytics.yolo.utils.plotting.feature_visualization
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, select_highest_overlaps, and dist2bbox utilities. Streamline your workflow today.
|
||||
---
|
||||
|
||||
# TaskAlignedAssigner
|
||||
---
|
||||
:::ultralytics.yolo.utils.tal.TaskAlignedAssigner
|
||||
@ -26,4 +30,4 @@
|
||||
# bbox2dist
|
||||
---
|
||||
:::ultralytics.yolo.utils.tal.bbox2dist
|
||||
<br><br>
|
||||
<br><br>
|
@ -1,3 +1,7 @@
|
||||
---
|
||||
description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils functions such as ModelEMA, select_device, and is_parallel.
|
||||
---
|
||||
|
||||
# ModelEMA
|
||||
---
|
||||
:::ultralytics.yolo.utils.torch_utils.ModelEMA
|
||||
@ -116,4 +120,4 @@
|
||||
# profile
|
||||
---
|
||||
:::ultralytics.yolo.utils.torch_utils.profile
|
||||
<br><br>
|
||||
<br><br>
|
Reference in New Issue
Block a user