ultralytics 8.0.97 confusion matrix, windows, docs updates (#2511)

Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Dowon <ks2515@naver.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-05-09 21:20:34 +02:00
committed by GitHub
parent 6ee3a9a74b
commit d1107ca4cb
138 changed files with 744 additions and 351 deletions

View File

@ -1,4 +1,8 @@
---
description: Learn how to use Ultralytics hub authentication in your projects with examples and guidelines from the Auth page on Ultralytics Docs.
---
# Auth
---
:::ultralytics.hub.auth.Auth
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Accelerate your AI development with the Ultralytics HUB Training Session. High-performance training of object detection models.
---
# HUBTrainingSession
---
:::ultralytics.hub.session.HUBTrainingSession
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Explore Ultralytics events, including 'request_with_credentials' and 'smart_request', to improve your project's performance and efficiency.
---
# Events
---
:::ultralytics.hub.utils.Events
@ -16,4 +20,4 @@
# smart_request
---
:::ultralytics.hub.utils.smart_request
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Ensure class names match filenames for easy imports. Use AutoBackend to automatically rename and refactor model files.
---
# AutoBackend
---
:::ultralytics.nn.autobackend.AutoBackend
@ -6,4 +10,4 @@
# check_class_names
---
:::ultralytics.nn.autobackend.check_class_names
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Detect 80+ object categories with bounding box coordinates and class probabilities using AutoShape in Ultralytics YOLO. Explore Detections now.
---
# AutoShape
---
:::ultralytics.nn.autoshape.AutoShape
@ -6,4 +10,4 @@
# Detections
---
:::ultralytics.nn.autoshape.Detections
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Explore Ultralytics neural network modules for convolution, attention, detection, pose, and classification in PyTorch.
---
# Conv
---
:::ultralytics.nn.modules.Conv
@ -166,4 +170,4 @@
# autopad
---
:::ultralytics.nn.modules.autopad
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch.
---
# BaseModel
---
:::ultralytics.nn.tasks.BaseModel
@ -56,4 +60,4 @@
# guess_model_task
---
:::ultralytics.nn.tasks.guess_model_task
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to register custom event-tracking and track predictions with Ultralytics YOLO via on_predict_start and register_tracker methods.
---
# on_predict_start
---
:::ultralytics.tracker.track.on_predict_start
@ -11,4 +15,4 @@
# register_tracker
---
:::ultralytics.tracker.track.register_tracker
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: 'TrackState: A comprehensive guide to Ultralytics tracker''s BaseTrack for monitoring model performance. Improve your tracking capabilities now!'
---
# TrackState
---
:::ultralytics.tracker.trackers.basetrack.TrackState
@ -6,4 +10,4 @@
# BaseTrack
---
:::ultralytics.tracker.trackers.basetrack.BaseTrack
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: '"Optimize tracking with Ultralytics BOTrack. Easily sort and track bots with BOTSORT. Streamline data collection for improved performance."'
---
# BOTrack
---
:::ultralytics.tracker.trackers.bot_sort.BOTrack
@ -6,4 +10,4 @@
# BOTSORT
---
:::ultralytics.tracker.trackers.bot_sort.BOTSORT
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to track ByteAI model sizes and tips for model optimization with STrack, a byte tracking tool from Ultralytics.
---
# STrack
---
:::ultralytics.tracker.trackers.byte_tracker.STrack
@ -6,4 +10,4 @@
# BYTETracker
---
:::ultralytics.tracker.trackers.byte_tracker.BYTETracker
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: '"Track Google Marketing Campaigns in GMC with Ultralytics Tracker. Learn to set up and use GMC for detailed analytics. Get started now."'
---
# GMC
---
:::ultralytics.tracker.utils.gmc.GMC
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Improve object tracking with KalmanFilterXYAH in Ultralytics YOLO - an efficient and accurate algorithm for state estimation.
---
# KalmanFilterXYAH
---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYAH
@ -6,4 +10,4 @@
# KalmanFilterXYWH
---
:::ultralytics.tracker.utils.kalman_filter.KalmanFilterXYWH
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to match and fuse object detections for accurate target tracking using Ultralytics' YOLO merge_matches, iou_distance, and embedding_distance.
---
# merge_matches
---
:::ultralytics.tracker.utils.matching.merge_matches
@ -56,4 +60,4 @@
# bbox_ious
---
:::ultralytics.tracker.utils.matching.bbox_ious
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Learn how to use auto_annotate in Ultralytics YOLO to generate annotations automatically for your dataset. Simplify object detection workflows.
---
# auto_annotate
---
:::ultralytics.yolo.data.annotator.auto_annotate
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp, and Albumentations for object detection and classification.
---
# BaseTransform
---
:::ultralytics.yolo.data.augment.BaseTransform
@ -86,4 +90,4 @@
# classify_albumentations
---
:::ultralytics.yolo.data.augment.classify_albumentations
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Learn about BaseDataset in Ultralytics YOLO, a flexible dataset class for object detection. Maximize your YOLO performance with custom datasets.
---
# BaseDataset
---
:::ultralytics.yolo.data.base.BaseDataset
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, seed_worker, build_dataloader, and load_inference_source functions.
---
# InfiniteDataLoader
---
:::ultralytics.yolo.data.build.InfiniteDataLoader
@ -31,4 +35,4 @@
# load_inference_source
---
:::ultralytics.yolo.data.build.load_inference_source
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-segment images with Ultralytics YOLO data converter. Improve your object detection.
---
# coco91_to_coco80_class
---
:::ultralytics.yolo.data.converter.coco91_to_coco80_class
@ -26,4 +30,4 @@
# delete_dsstore
---
:::ultralytics.yolo.data.converter.delete_dsstore
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and tensor data, as well as autocasting techniques. Check out SourceTypes and more.'
---
# SourceTypes
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes
@ -31,4 +35,4 @@
# autocast_list
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Enhance image data with Albumentations CenterCrop, normalize, augment_hsv, replicate, random_perspective, cutout, & box_candidates.
---
# Albumentations
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations
@ -81,4 +85,4 @@
# classify_transforms
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Efficiently load images and labels to models using Ultralytics YOLO's InfiniteDataLoader, LoadScreenshots, and LoadStreams.
---
# InfiniteDataLoader
---
:::ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader
@ -86,4 +90,4 @@
# create_classification_dataloader
---
:::ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and SemanticDataset. Streamline your object detection and segmentation projects.
---
# YOLODataset
---
:::ultralytics.yolo.data.dataset.YOLODataset
@ -11,4 +15,4 @@
# SemanticDataset
---
:::ultralytics.yolo.data.dataset.SemanticDataset
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Create a custom dataset of mixed and oriented rectangular objects with Ultralytics YOLO's MixAndRectDataset.
---
# MixAndRectDataset
---
:::ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatasetStats and customize dataset with these data utility functions.
---
# HUBDatasetStats
---
:::ultralytics.yolo.data.utils.HUBDatasetStats
@ -61,4 +65,4 @@
# zip_directory
---
:::ultralytics.yolo.data.utils.zip_directory
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to export your YOLO model in various formats using Ultralytics' exporter package - iOS, GDC, and more.
---
# Exporter
---
:::ultralytics.yolo.engine.exporter.Exporter
@ -26,4 +30,4 @@
# export
---
:::ultralytics.yolo.engine.exporter.export
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Discover the YOLO model of Ultralytics engine to simplify your object detection tasks with state-of-the-art models.
---
# YOLO
---
:::ultralytics.yolo.engine.model.YOLO
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: '"The BasePredictor class in Ultralytics YOLO Engine predicts object detection in images and videos. Learn to implement YOLO with ease."'
---
# BasePredictor
---
:::ultralytics.yolo.engine.predictor.BasePredictor
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check out Ultralytics Docs for quality tutorials and resources on object detection.
---
# BaseTensor
---
:::ultralytics.yolo.engine.results.BaseTensor
@ -16,4 +20,4 @@
# Masks
---
:::ultralytics.yolo.engine.results.Masks
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Train faster with mixed precision. Learn how to use BaseTrainer with Advanced Mixed Precision to optimize YOLOv3 and YOLOv4 models.
---
# BaseTrainer
---
:::ultralytics.yolo.engine.trainer.BaseTrainer
@ -6,4 +10,4 @@
# check_amp
---
:::ultralytics.yolo.engine.trainer.check_amp
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Ensure YOLOv5 models meet constraints and standards with the BaseValidator class. Learn how to use it here.
---
# BaseValidator
---
:::ultralytics.yolo.engine.validator.BaseValidator
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Dynamically adjusts input size to optimize GPU memory usage during training. Learn how to use check_train_batch_size with Ultralytics YOLO.
---
# check_train_batch_size
---
:::ultralytics.yolo.utils.autobatch.check_train_batch_size
@ -6,4 +10,4 @@
# autobatch
---
:::ultralytics.yolo.utils.autobatch.autobatch
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Improve your YOLO's performance and measure its speed. Benchmark utility for YOLOv5.
---
# benchmark
---
:::ultralytics.yolo.utils.benchmarks.benchmark
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about YOLO's callback functions from on_train_start to add_integration_callbacks. See how these callbacks modify and save models.
---
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
@ -131,4 +135,4 @@
# add_integration_callbacks
---
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Improve your YOLOv5 model training with callbacks from ClearML. Learn about log debug samples, pre-training routines, validation and more.
---
# _log_debug_samples
---
:::ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
@ -31,4 +35,4 @@
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about YOLO callbacks using the Comet.ml platform, enhancing object detection training and testing with custom logging and visualizations.
---
# _get_comet_mode
---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_mode
@ -116,4 +120,4 @@
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_train_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Improve YOLOv5 model training with Ultralytics' on-train callbacks. Boost performance on-pretrain-routine-end, model-save, train/predict start.
---
# on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
@ -36,4 +40,4 @@
# on_export_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_export_start
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Track model performance and metrics with MLflow in YOLOv5. Use callbacks like on_pretrain_routine_end or on_train_end to log information.
---
# on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
@ -11,4 +15,4 @@
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Improve YOLOv5 training with Neptune, a powerful logging tool. Track metrics like images, plots, and epochs for better model performance.
---
# _log_scalars
---
:::ultralytics.yolo.utils.callbacks.neptune._log_scalars
@ -36,4 +40,4 @@
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: '"Improve YOLO model performance with on_fit_epoch_end callback. Learn to integrate with Ray Tune for hyperparameter tuning. Ultralytics YOLO docs."'
---
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to monitor the training process with Tensorboard using Ultralytics YOLO's "_log_scalars" and "on_batch_end" methods.
---
# _log_scalars
---
:::ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
@ -16,4 +20,4 @@
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain_routine_start` and `on_train_epoch_end` for improved training performance.
---
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
@ -16,4 +20,4 @@
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_train_end
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: 'Check functions for YOLO utils: image size, version, font, requirements, filename suffix, YAML file, YOLO, and Git version.'
---
# is_ascii
---
:::ultralytics.yolo.utils.checks.is_ascii
@ -76,4 +80,4 @@
# print_args
---
:::ultralytics.yolo.utils.checks.print_args
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to find free network port and generate DDP (Distributed Data Parallel) command in Ultralytics YOLO with easy examples.
---
# find_free_network_port
---
:::ultralytics.yolo.utils.dist.find_free_network_port
@ -16,4 +20,4 @@
# ddp_cleanup
---
:::ultralytics.yolo.utils.dist.ddp_cleanup
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs utils.downloads.unzip_file, checks disk space, downloads and attempts assets.
---
# is_url
---
:::ultralytics.yolo.utils.downloads.is_url
@ -26,4 +30,4 @@
# download
---
:::ultralytics.yolo.utils.downloads.download
<br><br>
<br><br>

View File

@ -1,4 +1,8 @@
---
description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the error and get the most out of your YOLO model.
---
# HUBModelError
---
:::ultralytics.yolo.utils.errors.HUBModelError
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: 'Learn about Ultralytics YOLO files and directory utilities: WorkingDirectory, file_age, file_size, and make_dirs.'
---
# WorkingDirectory
---
:::ultralytics.yolo.utils.files.WorkingDirectory
@ -31,4 +35,4 @@
# make_dirs
---
:::ultralytics.yolo.utils.files.make_dirs
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO for object detection. Improve accuracy and speed with these powerful tools.
---
# Bboxes
---
:::ultralytics.yolo.utils.instance.Bboxes
@ -11,4 +15,4 @@
# _ntuple
---
:::ultralytics.yolo.utils.instance._ntuple
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO for advanced bounding box and pose estimation. Visit our docs for more.
---
# VarifocalLoss
---
:::ultralytics.yolo.utils.loss.VarifocalLoss
@ -11,4 +15,4 @@
# KeypointLoss
---
:::ultralytics.yolo.utils.loss.KeypointLoss
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, ClassifyMetrics, and more with Ultralytics Metrics documentation.
---
# FocalLoss
---
:::ultralytics.yolo.utils.metrics.FocalLoss
@ -91,4 +95,4 @@
# ap_per_class
---
:::ultralytics.yolo.utils.metrics.ap_per_class
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about various utility functions in Ultralytics YOLO, including x, y, width, height conversions, non-max suppression, and more.
---
# Profile
---
:::ultralytics.yolo.utils.ops.Profile
@ -131,4 +135,4 @@
# clean_str
---
:::ultralytics.yolo.utils.ops.clean_str
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: 'Discover the power of YOLO''s plotting functions: Colors, Labels and Images. Code examples to output targets and visualize features. Check it now.'
---
# Colors
---
:::ultralytics.yolo.utils.plotting.Colors
@ -36,4 +40,4 @@
# feature_visualization
---
:::ultralytics.yolo.utils.plotting.feature_visualization
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, select_highest_overlaps, and dist2bbox utilities. Streamline your workflow today.
---
# TaskAlignedAssigner
---
:::ultralytics.yolo.utils.tal.TaskAlignedAssigner
@ -26,4 +30,4 @@
# bbox2dist
---
:::ultralytics.yolo.utils.tal.bbox2dist
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils functions such as ModelEMA, select_device, and is_parallel.
---
# ModelEMA
---
:::ultralytics.yolo.utils.torch_utils.ModelEMA
@ -116,4 +120,4 @@
# profile
---
:::ultralytics.yolo.utils.torch_utils.profile
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for object classification tasks in a simple and efficient way.
---
# ClassificationPredictor
---
:::ultralytics.yolo.v8.classify.predict.ClassificationPredictor
@ -6,4 +10,4 @@
# predict
---
:::ultralytics.yolo.v8.classify.predict.predict
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Train a custom image classification model using Ultralytics YOLOv8 with ClassificationTrainer. Boost accuracy and efficiency today.
---
# ClassificationTrainer
---
:::ultralytics.yolo.v8.classify.train.ClassificationTrainer
@ -6,4 +10,4 @@
# train
---
:::ultralytics.yolo.v8.classify.train.train
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Ensure model classification accuracy with Ultralytics YOLO's ClassificationValidator. Validate and improve your model with ease.
---
# ClassificationValidator
---
:::ultralytics.yolo.v8.classify.val.ClassificationValidator
@ -6,4 +10,4 @@
# val
---
:::ultralytics.yolo.v8.classify.val.val
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Detect and predict objects in images and videos using the Ultralytics YOLO v8 model with DetectionPredictor.
---
# DetectionPredictor
---
:::ultralytics.yolo.v8.detect.predict.DetectionPredictor
@ -6,4 +10,4 @@
# predict
---
:::ultralytics.yolo.v8.detect.predict.predict
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Train and optimize custom object detection models with Ultralytics DetectionTrainer and train functions. Get started with YOLO v8 today.
---
# DetectionTrainer
---
:::ultralytics.yolo.v8.detect.train.DetectionTrainer
@ -11,4 +15,4 @@
# train
---
:::ultralytics.yolo.v8.detect.train.train
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Validate YOLOv5 detections using this PyTorch module. Ensure model accuracy with NMS IOU threshold tuning and label mapping.
---
# DetectionValidator
---
:::ultralytics.yolo.v8.detect.val.DetectionValidator
@ -6,4 +10,4 @@
# val
---
:::ultralytics.yolo.v8.detect.val.val
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Predict human pose coordinates and confidence scores using YOLOv5. Use on real-time video streams or static images.
---
# PosePredictor
---
:::ultralytics.yolo.v8.pose.predict.PosePredictor
@ -6,4 +10,4 @@
# predict
---
:::ultralytics.yolo.v8.pose.predict.predict
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Boost posture detection using PoseTrainer and train models using train() API. Learn PoseLoss for ultra-fast and accurate pose detection with Ultralytics YOLO.
---
# PoseTrainer
---
:::ultralytics.yolo.v8.pose.train.PoseTrainer
@ -11,4 +15,4 @@
# train
---
:::ultralytics.yolo.v8.pose.train.train
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Ensure proper human poses in images with YOLOv8 Pose Validation, part of the Ultralytics YOLO v8 suite.
---
# PoseValidator
---
:::ultralytics.yolo.v8.pose.val.PoseValidator
@ -6,4 +10,4 @@
# val
---
:::ultralytics.yolo.v8.pose.val.val
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: '"Use SegmentationPredictor in YOLOv8 for efficient object detection and segmentation. Explore Ultralytics YOLO Docs for more information."'
---
# SegmentationPredictor
---
:::ultralytics.yolo.v8.segment.predict.SegmentationPredictor
@ -6,4 +10,4 @@
# predict
---
:::ultralytics.yolo.v8.segment.predict.predict
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 for efficient object detection models. Improve your training with Ultralytics Docs.
---
# SegmentationTrainer
---
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer
@ -11,4 +15,4 @@
# train
---
:::ultralytics.yolo.v8.segment.train.train
<br><br>
<br><br>

View File

@ -1,3 +1,7 @@
---
description: Ensure segmentation quality on large datasets with SegmentationValidator. Review and visualize results with ease. Learn more at Ultralytics Docs.
---
# SegmentationValidator
---
:::ultralytics.yolo.v8.segment.val.SegmentationValidator
@ -6,4 +10,4 @@
# val
---
:::ultralytics.yolo.v8.segment.val.val
<br><br>
<br><br>