Add TensorBoard support (#87)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 248d54ca03
commit cb4f20f3cf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -91,15 +91,15 @@ jobs:
shell: bash # for Windows compatibility
run: |
yolo task=detect mode=train model=yolov5n.yaml data=coco128.yaml epochs=1 imgsz=64
yolo task=detect mode=val model=runs/exp/weights/last.pt imgsz=64
yolo task=detect mode=val model=runs/train/exp/weights/last.pt imgsz=64
- name: Test segmentation
shell: bash # for Windows compatibility
# TODO: redo val test without hardcoded weights
run: |
yolo task=segment mode=train model=yolov5n-seg.yaml data=coco128-seg.yaml epochs=1 imgsz=64
yolo task=segment mode=val model=runs/exp2/weights/last.pt data=coco128-seg.yaml imgsz=64
yolo task=segment mode=val model=runs/train/exp2/weights/last.pt data=coco128-seg.yaml imgsz=64
- name: Test classification
shell: bash # for Windows compatibility
run: |
yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 imgsz=32
yolo task=classify mode=val model=runs/exp3/weights/last.pt data=mnist160
yolo task=classify mode=val model=runs/train/exp3/weights/last.pt data=mnist160

@ -4,7 +4,6 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
import os
import subprocess
import sys
import time
from collections import defaultdict
from copy import deepcopy
@ -128,6 +127,7 @@ class BaseTrainer:
Builds dataloaders and optimizer on correct rank process
"""
# model
self.trigger_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
@ -159,13 +159,13 @@ class BaseTrainer:
# metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val")
# self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model)
self.trigger_callbacks("on_pretrain_routine_end")
def _do_train(self, rank=-1, world_size=1):
if world_size > 1:
self._setup_ddp(rank, world_size)
self._setup_train(rank, world_size)
self.trigger_callbacks("before_train")
self.epoch_time = None
self.epoch_time_start = time.time()
@ -173,9 +173,10 @@ class BaseTrainer:
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.trigger_callbacks("on_train_start")
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.trigger_callbacks("on_epoch_start")
self.trigger_callbacks("on_train_epoch_start")
self.model.train()
if rank != -1:
self.train_loader.sampler.set_epoch(epoch)
@ -186,7 +187,7 @@ class BaseTrainer:
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.trigger_callbacks("on_batch_start")
self.trigger_callbacks("on_train_batch_start")
# forward
batch = self.preprocess_batch(batch)
@ -207,7 +208,7 @@ class BaseTrainer:
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
else self.loss_items
# backward
self.scaler.scale(self.loss).backward()
@ -229,8 +230,11 @@ class BaseTrainer:
if self.args.plots and ni < 3:
self.plot_training_samples(batch, ni)
self.trigger_callbacks("on_train_batch_end")
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
self.trigger_callbacks("on_train_epoch_end")
if rank in [-1, 0]:
# validation
@ -260,9 +264,11 @@ class BaseTrainer:
if self.args.plots:
self.plot_metrics()
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
self.trigger_callbacks('on_train_end')
dist.destroy_process_group() if world_size > 1 else None
torch.cuda.empty_cache()
self.trigger_callbacks('teardown')
def save_model(self):
ckpt = {

@ -1,13 +1,36 @@
def before_train(trainer):
# Initialize tensorboard logger
def on_pretrain_routine_start(trainer):
pass
def on_epoch_start(trainer):
def on_pretrain_routine_end(trainer):
pass
def on_batch_start(trainer):
def on_train_start(trainer):
pass
def on_train_epoch_start(trainer):
pass
def on_train_batch_start(trainer):
pass
def optimizer_step(trainer):
pass
def on_before_zero_grad(trainer):
pass
def on_train_batch_end(trainer):
pass
def on_train_epoch_end(trainer):
pass
@ -15,27 +38,68 @@ def on_val_start(trainer):
pass
def on_val_batch_start(trainer):
pass
def on_val_image_end(trainer):
pass
def on_val_batch_end(trainer):
pass
def on_val_end(trainer):
pass
def on_fit_epoch_end(trainer):
pass
def on_model_save(trainer):
pass
def on_train_end(trainer):
pass
def on_params_update(trainer):
pass
def teardown(trainer):
pass
default_callbacks = {
"before_train": before_train,
"on_epoch_start": on_epoch_start,
"on_batch_start": on_batch_start,
"on_val_start": on_val_start,
"on_val_end": on_val_end,
"on_model_save": on_model_save}
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_train_start': on_train_start,
'on_train_epoch_start': on_train_epoch_start,
'on_train_batch_start': on_train_batch_start,
'optimizer_step': optimizer_step,
'on_before_zero_grad': on_before_zero_grad,
'on_train_batch_end': on_train_batch_end,
'on_train_epoch_end': on_train_epoch_end,
'on_val_start': on_val_start,
'on_val_batch_start': on_val_batch_start,
'on_val_image_end': on_val_image_end,
'on_val_batch_end': on_val_batch_end,
'on_val_end': on_val_end,
'on_fit_epoch_end': on_fit_epoch_end, # fit = train + val
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_params_update': on_params_update,
'teardown': teardown}
def add_integration_callbacks(trainer):
callbacks = {}
from .clearml import callbacks as clearml_callbacks
from .tb import callbacks as tb_callbacks
from .clearml import callbacks, clearml
if clearml:
for callback, func in callbacks.items():
trainer.add_callback(callback, func)
for x in tb_callbacks, clearml_callbacks:
for k, v in x.items():
trainer.add_callback(k, v) # add_callback(name, func)

@ -9,47 +9,33 @@ except (ImportError, AssertionError):
clearml = None
def _log_scalers(metric_dict, group="", step=0):
task = Task.current_task()
if task:
for k, v in metric_dict.items():
task.get_logger().report_scalar(group, k, v, step)
def before_train(trainer):
def on_train_start(trainer):
# TODO: reuse existing task
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv5',
task_name=trainer.args.name if trainer.args.name != 'exp' else 'Training',
tags=['YOLOv5'],
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
task_name=trainer.args.name,
tags=['YOLOv8'],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={'pytorch': False})
task.connect(dict(trainer.args), name='General')
def on_batch_end(trainer):
_log_scalers(trainer.label_loss_items(trainer.tloss, prefix="train"), "train", trainer.epoch)
def on_val_end(trainer):
_log_scalers(trainer.label_loss_items(trainer.validator.loss, prefix="val"), "val", trainer.epoch)
_log_scalers({k: v for k, v in trainer.metrics.items() if k.startswith("metrics")}, "metrics", trainer.epoch)
if trainer.epoch == 0:
model_info = {
"inference_speed": trainer.validator.speed[1],
"flops@640": get_flops(trainer.model),
"params": get_num_params(trainer.model)}
Task.current_task().connect(model_info, 'Model')
"Inference speed (ms/img)": round(trainer.validator.speed[1], 1),
"GFLOPs": round(get_flops(trainer.model), 1),
"Parameters": get_num_params(trainer.model)}
Task.current_task().connect(model_info, name='Model')
def on_train_end(trainer):
task = Task.current_task()
if task:
task.update_output_model(model_path=str(trainer.best), model_name='Best Model', auto_delete_file=False)
Task.current_task().update_output_model(model_path=str(trainer.best),
model_name=trainer.args.name,
auto_delete_file=False)
callbacks = {
"before_train": before_train,
"on_train_start": on_train_start,
"on_val_end": on_val_end,
"on_batch_end": on_batch_end,
"on_train_end": on_train_end}
"on_train_end": on_train_end} if clearml else {}

@ -0,0 +1,26 @@
from torch.utils.tensorboard import SummaryWriter
writer = None # TensorBoard SummaryWriter instance
def _log_scalars(scalars, step=0):
for k, v in scalars.items():
writer.add_scalar(k, v, step)
def on_train_start(trainer):
global writer
writer = SummaryWriter(str(trainer.save_dir))
trainer.console.info(f"Logging results to {trainer.save_dir}\n"
f"Starting training for {trainer.args.epochs} epochs...")
def on_batch_end(trainer):
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch)
def on_val_end(trainer):
_log_scalars(trainer.metrics, trainer.epoch)
callbacks = {"on_train_start": on_train_start, "on_val_end": on_val_end, "on_batch_end": on_batch_end}

@ -15,7 +15,7 @@ nosave: False
cache: False # True/ram, disk or False
device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers: 8
project: 'runs'
project: 'runs/train'
name: 'exp'
exist_ok: False
pretrained: False

Loading…
Cancel
Save