Add TensorBoard support (#87)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -4,7 +4,6 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
@ -128,6 +127,7 @@ class BaseTrainer:
|
||||
Builds dataloaders and optimizer on correct rank process
|
||||
"""
|
||||
# model
|
||||
self.trigger_callbacks("on_pretrain_routine_start")
|
||||
ckpt = self.setup_model()
|
||||
self.model = self.model.to(self.device)
|
||||
self.set_model_attributes()
|
||||
@ -159,13 +159,13 @@ class BaseTrainer:
|
||||
# metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val")
|
||||
# self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
|
||||
self.ema = ModelEMA(self.model)
|
||||
self.trigger_callbacks("on_pretrain_routine_end")
|
||||
|
||||
def _do_train(self, rank=-1, world_size=1):
|
||||
if world_size > 1:
|
||||
self._setup_ddp(rank, world_size)
|
||||
|
||||
self._setup_train(rank, world_size)
|
||||
self.trigger_callbacks("before_train")
|
||||
|
||||
self.epoch_time = None
|
||||
self.epoch_time_start = time.time()
|
||||
@ -173,9 +173,10 @@ class BaseTrainer:
|
||||
nb = len(self.train_loader) # number of batches
|
||||
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
|
||||
last_opt_step = -1
|
||||
self.trigger_callbacks("on_train_start")
|
||||
for epoch in range(self.start_epoch, self.epochs):
|
||||
self.epoch = epoch
|
||||
self.trigger_callbacks("on_epoch_start")
|
||||
self.trigger_callbacks("on_train_epoch_start")
|
||||
self.model.train()
|
||||
if rank != -1:
|
||||
self.train_loader.sampler.set_epoch(epoch)
|
||||
@ -186,7 +187,7 @@ class BaseTrainer:
|
||||
self.tloss = None
|
||||
self.optimizer.zero_grad()
|
||||
for i, batch in pbar:
|
||||
self.trigger_callbacks("on_batch_start")
|
||||
self.trigger_callbacks("on_train_batch_start")
|
||||
# forward
|
||||
batch = self.preprocess_batch(batch)
|
||||
|
||||
@ -207,7 +208,7 @@ class BaseTrainer:
|
||||
if rank != -1:
|
||||
self.loss *= world_size
|
||||
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
|
||||
else self.loss_items
|
||||
else self.loss_items
|
||||
|
||||
# backward
|
||||
self.scaler.scale(self.loss).backward()
|
||||
@ -229,8 +230,11 @@ class BaseTrainer:
|
||||
if self.args.plots and ni < 3:
|
||||
self.plot_training_samples(batch, ni)
|
||||
|
||||
self.trigger_callbacks("on_train_batch_end")
|
||||
|
||||
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
|
||||
self.scheduler.step()
|
||||
self.trigger_callbacks("on_train_epoch_end")
|
||||
|
||||
if rank in [-1, 0]:
|
||||
# validation
|
||||
@ -260,9 +264,11 @@ class BaseTrainer:
|
||||
if self.args.plots:
|
||||
self.plot_metrics()
|
||||
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
|
||||
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
|
||||
self.trigger_callbacks('on_train_end')
|
||||
dist.destroy_process_group() if world_size > 1 else None
|
||||
torch.cuda.empty_cache()
|
||||
self.trigger_callbacks('teardown')
|
||||
|
||||
def save_model(self):
|
||||
ckpt = {
|
||||
|
Reference in New Issue
Block a user