Add TensorBoard support (#87)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2022-12-24 14:37:46 +01:00
committed by GitHub
parent 248d54ca03
commit cb4f20f3cf
6 changed files with 133 additions and 51 deletions

View File

@ -4,7 +4,6 @@ Simple training loop; Boilerplate that could apply to any arbitrary neural netwo
import os
import subprocess
import sys
import time
from collections import defaultdict
from copy import deepcopy
@ -128,6 +127,7 @@ class BaseTrainer:
Builds dataloaders and optimizer on correct rank process
"""
# model
self.trigger_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
@ -159,13 +159,13 @@ class BaseTrainer:
# metric_keys = self.validator.metric_keys + self.label_loss_items(prefix="val")
# self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model)
self.trigger_callbacks("on_pretrain_routine_end")
def _do_train(self, rank=-1, world_size=1):
if world_size > 1:
self._setup_ddp(rank, world_size)
self._setup_train(rank, world_size)
self.trigger_callbacks("before_train")
self.epoch_time = None
self.epoch_time_start = time.time()
@ -173,9 +173,10 @@ class BaseTrainer:
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.trigger_callbacks("on_train_start")
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.trigger_callbacks("on_epoch_start")
self.trigger_callbacks("on_train_epoch_start")
self.model.train()
if rank != -1:
self.train_loader.sampler.set_epoch(epoch)
@ -186,7 +187,7 @@ class BaseTrainer:
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.trigger_callbacks("on_batch_start")
self.trigger_callbacks("on_train_batch_start")
# forward
batch = self.preprocess_batch(batch)
@ -207,7 +208,7 @@ class BaseTrainer:
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
else self.loss_items
# backward
self.scaler.scale(self.loss).backward()
@ -229,8 +230,11 @@ class BaseTrainer:
if self.args.plots and ni < 3:
self.plot_training_samples(batch, ni)
self.trigger_callbacks("on_train_batch_end")
lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
self.trigger_callbacks("on_train_epoch_end")
if rank in [-1, 0]:
# validation
@ -260,9 +264,11 @@ class BaseTrainer:
if self.args.plots:
self.plot_metrics()
self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)")
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
self.trigger_callbacks('on_train_end')
dist.destroy_process_group() if world_size > 1 else None
torch.cuda.empty_cache()
self.trigger_callbacks('teardown')
def save_model(self):
ckpt = {