`ultralytics 8.0.32` HUB and TensorFlow fixes (#870)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent f5d003d05a
commit c9893810c7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,30 +1,54 @@
# Ultralytics HUB # Ultralytics HUB
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
<br>
<br>
<div align="center"> <div align="center">
<a href="https://hub.ultralytics.com" target="_blank"> <a href="https://github.com/ultralytics" style="text-decoration:none;">
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
<br>
<br> <br>
<a href="https://github.com/ultralytics/hub/actions/workflows/ci.yaml"> <a href="https://github.com/ultralytics/hub/actions/workflows/ci.yaml">
<img src="https://github.com/ultralytics/hub/actions/workflows/ci.yaml/badge.svg" alt="CI CPU"></a> <img src="https://github.com/ultralytics/hub/actions/workflows/ci.yaml/badge.svg" alt="CI CPU"></a>
<a href="https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
</div> </div>
<br>
[Ultralytics HUB](https://hub.ultralytics.com) is a new no-code online tool developed [Ultralytics HUB](https://hub.ultralytics.com) is a new no-code online tool developed
by [Ultralytics](https://ultralytics.com), the creators of the popular [YOLOv5](https://github.com/ultralytics/yolov5) by [Ultralytics](https://ultralytics.com), the creators of the popular [YOLOv5](https://github.com/ultralytics/yolov5)
object detection and image segmentation models. With Ultralytics HUB, users can easily train and deploy YOLOv5 models object detection and image segmentation models. With Ultralytics HUB, users can easily train and deploy YOLO models
without any coding or technical expertise. without any coding or technical expertise.
Ultralytics HUB is designed to be user-friendly and intuitive, with a drag-and-drop interface that allows users to Ultralytics HUB is designed to be user-friendly and intuitive, with a drag-and-drop interface that allows users to
easily upload their data and select their model configurations. It also offers a range of pre-trained models and easily upload their data and select their model configurations. It also offers a range of pre-trained models and
templates to choose from, making it easy for users to get started with training their own models. Once a model is templates to choose from, making it easy for users to get started with training their own models. Once a model is
trained, it can be easily deployed and used for real-time object detection and image segmentation tasks. Overall, trained, it can be easily deployed and used for real-time object detection and image segmentation tasks. Overall,
Ultralytics HUB is an essential tool for anyone looking to use YOLOv5 for their object detection and image segmentation Ultralytics HUB is an essential tool for anyone looking to use YOLO for their object detection and image segmentation
projects. projects.
**[Get started now](https://hub.ultralytics.com)** and experience the power and simplicity of Ultralytics HUB for **[Get started now](https://hub.ultralytics.com)** and experience the power and simplicity of Ultralytics HUB for
yourself. Sign up for a free account and yourself. Sign up for a free account and start building, training, and deploying YOLOv5 and YOLOv8 models today.
start building, training, and deploying YOLOv5 and YOLOv8 models today.
## 1. Upload a Dataset ## 1. Upload a Dataset
@ -44,7 +68,9 @@ zip -r coco6.zip coco6
The example [coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip) dataset in this repository can be The example [coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip) dataset in this repository can be
downloaded and unzipped to see exactly how to structure your custom dataset. downloaded and unzipped to see exactly how to structure your custom dataset.
<p align="center"><img width="80%" src="https://user-images.githubusercontent.com/26833433/201424843-20fa081b-ad4b-4d6c-a095-e810775908d8.png" title="COCO6" /></p> <p align="center">
<img width="80%" src="https://user-images.githubusercontent.com/26833433/201424843-20fa081b-ad4b-4d6c-a095-e810775908d8.png" title="COCO6" />
</p>
The dataset YAML is the same standard YOLOv5 YAML format. See The dataset YAML is the same standard YOLOv5 YAML format. See
the [YOLOv5 Train Custom Data tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) for full details. the [YOLOv5 Train Custom Data tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) for full details.
@ -68,20 +94,21 @@ names:
After zipping your dataset, sign in to [Ultralytics HUB](https://bit.ly/ultralytics_hub) and click the Datasets tab. After zipping your dataset, sign in to [Ultralytics HUB](https://bit.ly/ultralytics_hub) and click the Datasets tab.
Click 'Upload Dataset' to upload, scan and visualize your new dataset before training new YOLOv5 models on it! Click 'Upload Dataset' to upload, scan and visualize your new dataset before training new YOLOv5 models on it!
<img width="100%" alt="HUB Dataset Upload" src="https://user-images.githubusercontent.com/26833433/198611715-540c9856-49d7-4069-a2fd-7c9eb70e772e.png"> <img width="100%" alt="HUB Dataset Upload" src="https://user-images.githubusercontent.com/26833433/216763338-9a8812c8-a4e5-4362-8102-40dad7818396.png">
## 2. Train a Model ## 2. Train a Model
Connect to the Ultralytics HUB notebook and use your model API key to begin Connect to the Ultralytics HUB notebook and use your model API key to begin training!
training! <a href="https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb" target="_blank">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
## 3. Deploy to Real World ## 3. Deploy to Real World
Export your model to 13 different formats, including TensorFlow, ONNX, OpenVINO, CoreML, Paddle and many others. Run Export your model to 13 different formats, including TensorFlow, ONNX, OpenVINO, CoreML, Paddle and many others. Run
models directly on your mobile device by downloading the [Ultralytics App](https://ultralytics.com/app_install)! models directly on your [iOS](https://apps.apple.com/xk/app/ultralytics/id1583935240) or
[Android](https://play.google.com/store/apps/details?id=com.ultralytics.ultralytics_app) mobile device by downloading
<a href="https://ultralytics.com/app_install" target="_blank"> the [Ultralytics App](https://ultralytics.com/app_install)!
<img width="100%" alt="Ultralytics mobile app" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-app.png"></a>
## ❓ Issues ## ❓ Issues

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license # Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.31" __version__ = "8.0.32"
from ultralytics.yolo.engine.model import YOLO from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops from ultralytics.yolo.utils import ops

@ -12,7 +12,7 @@ from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_
from ultralytics.yolo.utils import is_colab, threaded, LOGGER, emojis, PREFIX from ultralytics.yolo.utils import is_colab, threaded, LOGGER, emojis, PREFIX
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
AGENT_NAME = (f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local") AGENT_NAME = f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local"
session = None session = None
@ -95,7 +95,8 @@ class HubTrainingSession:
if data.get("status", None) == "trained": if data.get("status", None) == "trained":
raise ValueError( raise ValueError(
emojis(f"Model trained. View model at https://hub.ultralytics.com/models/{self.model_id} 🚀")) emojis(f"Model is already trained and uploaded to "
f"https://hub.ultralytics.com/models/{self.model_id} 🚀"))
if not data.get("data", None): if not data.get("data", None):
raise ValueError("Dataset may still be processing. Please wait a minute and try again.") # RF fix raise ValueError("Dataset may still be processing. Please wait a minute and try again.") # RF fix

@ -190,5 +190,4 @@ class Traces:
# Run below code on hub/utils init ------------------------------------------------------------------------------------- # Run below code on hub/utils init -------------------------------------------------------------------------------------
traces = Traces() traces = Traces()

@ -49,19 +49,19 @@ CLI_HELP_MSG = \
GitHub: https://github.com/ultralytics/ultralytics GitHub: https://github.com/ultralytics/ultralytics
""" """
CFG_FLOAT_KEYS = {'warmup_epochs', 'box', 'cls', 'dfl'} CFG_FLOAT_KEYS = {'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'}
CFG_FRACTION_KEYS = { CFG_FRACTION_KEYS = {
'dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', 'fl_gamma', 'dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', 'fl_gamma',
'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'degrees', 'translate', 'scale', 'shear', 'perspective', 'flipud', 'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', 'fliplr', 'mosaic',
'fliplr', 'mosaic', 'mixup', 'copy_paste', 'conf', 'iou'} 'mixup', 'copy_paste', 'conf', 'iou'}
CFG_INT_KEYS = { CFG_INT_KEYS = {
'epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride', 'epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
'line_thickness', 'workspace', 'nbs'} 'line_thickness', 'workspace', 'nbs'}
CFG_BOOL_KEYS = { CFG_BOOL_KEYS = {
'save', 'cache', 'exist_ok', 'pretrained', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'save', 'exist_ok', 'pretrained', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'cos_lr',
'cos_lr', 'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf',
'save_conf', 'save_crop', 'hide_labels', 'hide_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'save_crop', 'hide_labels', 'hide_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
'boxes', 'keras', 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader'} 'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader'}
def cfg2dict(cfg): def cfg2dict(cfg):

@ -28,7 +28,6 @@ class BaseDataset(Dataset):
self, self,
img_path, img_path,
imgsz=640, imgsz=640,
label_path=None,
cache=False, cache=False,
augment=True, augment=True,
hyp=None, hyp=None,
@ -42,7 +41,6 @@ class BaseDataset(Dataset):
super().__init__() super().__init__()
self.img_path = img_path self.img_path = img_path
self.imgsz = imgsz self.imgsz = imgsz
self.label_path = label_path
self.augment = augment self.augment = augment
self.single_cls = single_cls self.single_cls = single_cls
self.prefix = prefix self.prefix = prefix

@ -61,7 +61,7 @@ def seed_worker(worker_id):
random.seed(worker_seed) random.seed(worker_seed)
def build_dataloader(cfg, batch_size, img_path, stride=32, rect=False, label_path=None, rank=-1, mode="train"): def build_dataloader(cfg, batch, img_path, stride=32, rect=False, names=None, rank=-1, mode="train"):
assert mode in ["train", "val"] assert mode in ["train", "val"]
shuffle = mode == "train" shuffle = mode == "train"
if cfg.rect and shuffle: if cfg.rect and shuffle:
@ -70,9 +70,8 @@ def build_dataloader(cfg, batch_size, img_path, stride=32, rect=False, label_pat
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = YOLODataset( dataset = YOLODataset(
img_path=img_path, img_path=img_path,
label_path=label_path,
imgsz=cfg.imgsz, imgsz=cfg.imgsz,
batch_size=batch_size, batch_size=batch,
augment=mode == "train", # augmentation augment=mode == "train", # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches rect=cfg.rect or rect, # rectangular batches
@ -82,18 +81,19 @@ def build_dataloader(cfg, batch_size, img_path, stride=32, rect=False, label_pat
pad=0.0 if mode == "train" else 0.5, pad=0.0 if mode == "train" else 0.5,
prefix=colorstr(f"{mode}: "), prefix=colorstr(f"{mode}: "),
use_segments=cfg.task == "segment", use_segments=cfg.task == "segment",
use_keypoints=cfg.task == "keypoint") use_keypoints=cfg.task == "keypoint",
names=names)
batch_size = min(batch_size, len(dataset)) batch = min(batch, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices nd = torch.cuda.device_count() # number of CUDA devices
workers = cfg.workers if mode == "train" else cfg.workers * 2 workers = cfg.workers if mode == "train" else cfg.workers * 2
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates
generator = torch.Generator() generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK) generator.manual_seed(6148914691236517205 + RANK)
return loader(dataset=dataset, return loader(dataset=dataset,
batch_size=batch_size, batch_size=batch,
shuffle=shuffle and sampler is None, shuffle=shuffle and sampler is None,
num_workers=nw, num_workers=nw,
sampler=sampler, sampler=sampler,

@ -14,7 +14,7 @@ from .utils import HELP_URL, LOCAL_RANK, get_hash, img2label_paths, verify_image
class YOLODataset(BaseDataset): class YOLODataset(BaseDataset):
cache_version = 1.0 # dataset labels *.cache version, >= 1.0 for YOLOv8 cache_version = '1.0.1' # dataset labels *.cache version, >= 1.0.0 for YOLOv8
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
"""YOLO Dataset. """YOLO Dataset.
Args: Args:
@ -22,11 +22,9 @@ class YOLODataset(BaseDataset):
prefix (str): prefix. prefix (str): prefix.
""" """
def __init__( def __init__(self,
self,
img_path, img_path,
imgsz=640, imgsz=640,
label_path=None,
cache=False, cache=False,
augment=True, augment=True,
hyp=None, hyp=None,
@ -38,12 +36,12 @@ class YOLODataset(BaseDataset):
single_cls=False, single_cls=False,
use_segments=False, use_segments=False,
use_keypoints=False, use_keypoints=False,
): names=None):
self.use_segments = use_segments self.use_segments = use_segments
self.use_keypoints = use_keypoints self.use_keypoints = use_keypoints
self.names = names
assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints." assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
super().__init__(img_path, imgsz, label_path, cache, augment, hyp, prefix, rect, batch_size, stride, pad, super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls)
single_cls)
def cache_labels(self, path=Path("./labels.cache")): def cache_labels(self, path=Path("./labels.cache")):
# Cache dataset labels, check images and read shapes # Cache dataset labels, check images and read shapes
@ -56,7 +54,7 @@ class YOLODataset(BaseDataset):
with ThreadPool(NUM_THREADS) as pool: with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(func=verify_image_label, results = pool.imap(func=verify_image_label,
iterable=zip(self.im_files, self.label_files, repeat(self.prefix), iterable=zip(self.im_files, self.label_files, repeat(self.prefix),
repeat(self.use_keypoints))) repeat(self.use_keypoints), repeat(len(self.names))))
pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT) pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
nm += nm_f nm += nm_f

@ -61,7 +61,7 @@ def exif_size(img):
def verify_image_label(args): def verify_image_label(args):
# Verify one image-label pair # Verify one image-label pair
im_file, lb_file, prefix, keypoint = args im_file, lb_file, prefix, keypoint, num_cls = args
# number (missing, found, empty, corrupt), message, segments, keypoints # number (missing, found, empty, corrupt), message, segments, keypoints
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None
try: try:
@ -97,16 +97,20 @@ def verify_image_label(args):
assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels"
kpts = np.zeros((lb.shape[0], 39)) kpts = np.zeros((lb.shape[0], 39))
for i in range(len(lb)): for i in range(len(lb)):
kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3)) # remove occlusion param from GT
3)) # remove the occlusion parameter from the GT
kpts[i] = np.hstack((lb[i, :5], kpt)) kpts[i] = np.hstack((lb[i, :5], kpt))
lb = kpts lb = kpts
assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter" assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter"
else: else:
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
assert (lb[:, 1:] <= 1).all(), \
f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
# All labels
max_cls = int(lb[:, 0].max()) # max label count
assert max_cls <= num_cls, \
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
f'Possible class labels are 0-{num_cls - 1}'
assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}" assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
assert (lb[:, 1:] <=
1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
_, i = np.unique(lb, axis=0, return_index=True) _, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check if len(i) < nl: # duplicate row check
lb = lb[i] # remove duplicates lb = lb[i] # remove duplicates
@ -192,8 +196,8 @@ def check_det_dataset(dataset, autodownload=True):
# Download (optional) # Download (optional)
extract_dir = '' extract_dir = ''
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1) new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False)
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) data = next((DATASETS_DIR / new_dir).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False extract_dir, autodownload = data.parent, False
# Read yaml (optional) # Read yaml (optional)

@ -203,7 +203,7 @@ class Exporter:
self.im = im self.im = im
self.model = model self.model = model
self.file = file self.file = file
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y) self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else tuple(tuple(x.shape) for x in y)
self.pretty_name = self.file.stem.replace('yolo', 'YOLO') self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
self.metadata = { self.metadata = {
'description': f"Ultralytics {self.pretty_name} model trained on {self.model.args['data']}", 'description': f"Ultralytics {self.pretty_name} model trained on {self.model.args['data']}",
@ -213,8 +213,8 @@ class Exporter:
'stride': int(max(model.stride)), 'stride': int(max(model.stride)),
'names': model.names} # model metadata 'names': model.names} # model metadata
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and " LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} BCHW and "
f"output shape {self.output_shape} ({file_size(file):.1f} MB)") f"output shape(s) {self.output_shape} ({file_size(file):.1f} MB)")
# Exports # Exports
f = [''] * len(fmts) # exported filenames f = [''] * len(fmts) # exported filenames
@ -234,6 +234,9 @@ class Exporter:
nms = False nms = False
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs, f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
agnostic_nms=self.args.agnostic_nms or tfjs) agnostic_nms=self.args.agnostic_nms or tfjs)
debug = False
if debug:
if pb or tfjs: # pb prerequisite to tfjs if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self._export_pb(s_model) f[6], _ = self._export_pb(s_model)
if tflite or edgetpu: if tflite or edgetpu:

@ -120,7 +120,7 @@ class BaseValidator:
if not pt: if not pt:
self.args.rect = False self.args.rect = False
self.dataloader = self.dataloader or \ self.dataloader = self.dataloader or \
self.get_dataloader(self.data.get("val") or self.data.set("test"), self.args.batch) self.get_dataloader(self.data.get("val") or self.data.get("test"), self.args.batch)
model.eval() model.eval()
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup

@ -39,6 +39,7 @@ def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
for f in zipObj.namelist(): # list all archived filenames in the zip for f in zipObj.namelist(): # list all archived filenames in the zip
if all(x not in f for x in exclude): if all(x not in f for x in exclude):
zipObj.extract(f, path=path) zipObj.extract(f, path=path)
return zipObj.namelist()[0] # return unzip dir
def safe_download(url, def safe_download(url,
@ -112,13 +113,14 @@ def safe_download(url,
unzip_dir = dir or f.parent # unzip to dir if provided else unzip in place unzip_dir = dir or f.parent # unzip to dir if provided else unzip in place
LOGGER.info(f'Unzipping {f} to {unzip_dir}...') LOGGER.info(f'Unzipping {f} to {unzip_dir}...')
if f.suffix == '.zip': if f.suffix == '.zip':
unzip_file(file=f, path=unzip_dir) # unzip unzip_dir = unzip_file(file=f, path=unzip_dir) # unzip
elif f.suffix == '.tar': elif f.suffix == '.tar':
subprocess.run(['tar', 'xf', f, '--directory', unzip_dir], check=True) # unzip subprocess.run(['tar', 'xf', f, '--directory', unzip_dir], check=True) # unzip
elif f.suffix == '.gz': elif f.suffix == '.gz':
subprocess.run(['tar', 'xfz', f, '--directory', unzip_dir], check=True) # unzip subprocess.run(['tar', 'xfz', f, '--directory', unzip_dir], check=True) # unzip
if delete: if delete:
f.unlink() # remove zip f.unlink() # remove zip
return unzip_dir
def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'): def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0'):

@ -41,7 +41,7 @@ class DetectionTrainer(BaseTrainer):
shuffle=mode == "train", shuffle=mode == "train",
seed=self.args.seed)[0] if self.args.v5loader else \ seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode, build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode,
rect=mode == "val")[0] rect=mode == "val", names=self.data['names'])[0]
def preprocess_batch(self, batch): def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255

@ -176,7 +176,8 @@ class DetectionValidator(BaseValidator):
prefix=colorstr(f'{self.args.mode}: '), prefix=colorstr(f'{self.args.mode}: '),
shuffle=False, shuffle=False,
seed=self.args.seed)[0] if self.args.v5loader else \ seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0] build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, names=self.data['names'],
mode="val")[0]
def plot_val_samples(self, batch, ni): def plot_val_samples(self, batch, ni):
plot_images(batch["img"], plot_images(batch["img"],

Loading…
Cancel
Save