Omit ultralytics/utils/callbacks from coverage (#4345)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher
2023-08-14 03:25:51 +02:00
committed by GitHub
parent d47718c367
commit c940d29d4f
18 changed files with 63 additions and 36 deletions

View File

@ -44,7 +44,7 @@ This example provides simple inference code for YOLO, SAM and RTDETR models. For
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -46,7 +46,7 @@ You can use RT-DETR for object detection tasks using the `ultralytics` pip packa
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -62,7 +62,7 @@ In this example we validate YOLO-NAS-s on the COCO8 dataset.
model.info()
# Validate the model on the COCO8 example dataset
results model.val(data='coco8.yaml')
results = model.val(data='coco8.yaml')
# Run inference with the YOLO-NAS-s model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -69,7 +69,7 @@ You can use YOLOv3 for object detection tasks using the Ultralytics repository.
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv3n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -74,7 +74,7 @@ You can use YOLOv5u for object detection tasks using the Ultralytics repository.
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv5n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -56,7 +56,7 @@ You can use YOLOv6 for object detection tasks using the Ultralytics pip package.
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv6n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')

View File

@ -101,7 +101,7 @@ You can use YOLOv8 for object detection tasks using the Ultralytics pip package.
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')