New YOLOv8 Results()
class for prediction outputs (#314)
Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Viet Nhat Thai <60825385+vietnhatthai@users.noreply.github.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
This commit is contained in:
@ -65,6 +65,7 @@ class AutoBackend(nn.Module):
|
||||
model = weights.to(device)
|
||||
model = model.fuse() if fuse else model
|
||||
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
pt = True
|
||||
@ -236,7 +237,7 @@ class AutoBackend(nn.Module):
|
||||
Runs inference on the YOLOv8 MultiBackend model.
|
||||
|
||||
Args:
|
||||
im (torch.tensor): The image tensor to perform inference on.
|
||||
im (torch.Tensor): The image tensor to perform inference on.
|
||||
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||||
visualize (bool): whether to visualize the output predictions, defaults to False
|
||||
|
||||
@ -328,10 +329,10 @@ class AutoBackend(nn.Module):
|
||||
Convert a numpy array to a tensor.
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): The array to be converted.
|
||||
x (np.ndarray): The array to be converted.
|
||||
|
||||
Returns:
|
||||
(torch.tensor): The converted tensor
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
|
@ -27,12 +27,12 @@ class BaseModel(nn.Module):
|
||||
Wrapper for `_forward_once` method.
|
||||
|
||||
Args:
|
||||
x (torch.tensor): The input image tensor
|
||||
x (torch.Tensor): The input image tensor
|
||||
profile (bool): Whether to profile the model, defaults to False
|
||||
visualize (bool): Whether to return the intermediate feature maps, defaults to False
|
||||
|
||||
Returns:
|
||||
(torch.tensor): The output of the network.
|
||||
(torch.Tensor): The output of the network.
|
||||
"""
|
||||
return self._forward_once(x, profile, visualize)
|
||||
|
||||
@ -41,12 +41,12 @@ class BaseModel(nn.Module):
|
||||
Perform a forward pass through the network.
|
||||
|
||||
Args:
|
||||
x (torch.tensor): The input tensor to the model
|
||||
x (torch.Tensor): The input tensor to the model
|
||||
profile (bool): Print the computation time of each layer if True, defaults to False.
|
||||
visualize (bool): Save the feature maps of the model if True, defaults to False
|
||||
|
||||
Returns:
|
||||
(torch.tensor): The last output of the model.
|
||||
(torch.Tensor): The last output of the model.
|
||||
"""
|
||||
y, dt = [], [] # outputs
|
||||
for m in self.model:
|
||||
|
Reference in New Issue
Block a user