New YOLOv8 Results() class for prediction outputs (#314)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Viet Nhat Thai <60825385+vietnhatthai@users.noreply.github.com>
Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
This commit is contained in:
Ayush Chaurasia
2023-01-17 19:02:34 +05:30
committed by GitHub
parent 0cb87f7dd3
commit c6985da9de
32 changed files with 813 additions and 259 deletions

View File

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
import subprocess
from pathlib import Path
from ultralytics.yolo.utils import ROOT, SETTINGS
@ -9,30 +9,35 @@ MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
CFG = 'yolov8n'
def run(cmd):
# Run a subprocess command with check=True
subprocess.run(cmd.split(), check=True)
def test_checks():
os.system('yolo mode=checks')
run('yolo mode=checks')
# Train checks ---------------------------------------------------------------------------------------------------------
def test_train_det():
os.system(f'yolo mode=train task=detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1')
run(f'yolo mode=train task=detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1')
def test_train_seg():
os.system(f'yolo mode=train task=segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1')
run(f'yolo mode=train task=segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1')
def test_train_cls():
os.system(f'yolo mode=train task=classify model={CFG}-cls.yaml data=mnist160 imgsz=32 epochs=1')
run(f'yolo mode=train task=classify model={CFG}-cls.yaml data=mnist160 imgsz=32 epochs=1')
# Val checks -----------------------------------------------------------------------------------------------------------
def test_val_detect():
os.system(f'yolo mode=val task=detect model={MODEL}.pt data=coco8.yaml imgsz=32 epochs=1')
run(f'yolo mode=val task=detect model={MODEL}.pt data=coco8.yaml imgsz=32 epochs=1')
def test_val_segment():
os.system(f'yolo mode=val task=segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32 epochs=1')
run(f'yolo mode=val task=segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32 epochs=1')
def test_val_classify():
@ -41,11 +46,11 @@ def test_val_classify():
# Predict checks -------------------------------------------------------------------------------------------------------
def test_predict_detect():
os.system(f"yolo mode=predict model={MODEL}.pt source={ROOT / 'assets'}")
run(f"yolo mode=predict task=detect model={MODEL}.pt source={ROOT / 'assets'}")
def test_predict_segment():
os.system(f"yolo mode=predict model={MODEL}-seg.pt source={ROOT / 'assets'}")
run(f"yolo mode=predict task=segment model={MODEL}-seg.pt source={ROOT / 'assets'}")
def test_predict_classify():
@ -54,12 +59,12 @@ def test_predict_classify():
# Export checks --------------------------------------------------------------------------------------------------------
def test_export_detect_torchscript():
os.system(f'yolo mode=export model={MODEL}.pt format=torchscript')
run(f'yolo mode=export model={MODEL}.pt format=torchscript')
def test_export_segment_torchscript():
os.system(f'yolo mode=export model={MODEL}-seg.pt format=torchscript')
run(f'yolo mode=export model={MODEL}-seg.pt format=torchscript')
def test_export_classify_torchscript():
pass
run(f'yolo mode=export model={MODEL}-cls.pt format=torchscript')

View File

@ -28,8 +28,8 @@ def test_detect():
# Predictor
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=f"{MODEL}.pt", return_outputs=True)
assert len(list(result)), "predictor test failed"
result = pred(source=SOURCE, model=f"{MODEL}.pt")
assert len(result), "predictor test failed"
overrides["resume"] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
@ -58,8 +58,8 @@ def test_segment():
# Predictor
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=f"{MODEL}-seg.pt", return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"
result = pred(source=SOURCE, model=f"{MODEL}-seg.pt")
assert len(result) == 2, "predictor test failed"
# Test resume
overrides["resume"] = trainer.last
@ -90,5 +90,5 @@ def test_classify():
# Predictor
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]})
result = pred(source=SOURCE, model=trainer.best, return_outputs=True)
assert len(list(result)) == 2, "predictor test failed"
result = pred(source=SOURCE, model=trainer.best)
assert len(result) == 2, "predictor test failed"

View File

@ -2,6 +2,10 @@
from pathlib import Path
import cv2
import torch
from PIL import Image
from ultralytics import YOLO
from ultralytics.yolo.utils import ROOT, SETTINGS
@ -35,6 +39,21 @@ def test_predict_dir():
model.predict(source=ROOT / "assets")
def test_predict_img():
model = YOLO(MODEL)
img = Image.open(str(SOURCE))
output = model(source=img, save=True, verbose=True) # PIL
assert len(output) == 1, "predict test failed"
img = cv2.imread(str(SOURCE))
output = model(source=img, save=True, save_txt=True) # ndarray
assert len(output) == 1, "predict test failed"
output = model(source=[img, img], save=True, save_txt=True) # batch
assert len(output) == 2, "predict test failed"
tens = torch.zeros(320, 640, 3)
output = model(tens.numpy())
assert len(output) == 1, "predict test failed"
def test_val():
model = YOLO(MODEL)
model.val(data="coco8.yaml", imgsz=32)
@ -106,3 +125,7 @@ def test_workflow():
model.val()
model.predict(SOURCE)
model.export(format="onnx", opset=12) # export a model to ONNX format
if __name__ == "__main__":
test_predict_img()