ultralytics 8.0.12 - Hydra removal (#506)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Pronoy Mandal <lukex9442@gmail.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Glenn Jocher
2023-01-21 00:45:19 +01:00
committed by GitHub
parent 6eec39162a
commit c5fccc3fc4
37 changed files with 395 additions and 469 deletions

View File

@ -1,11 +1,10 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import hydra
import torch
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, is_git_directory
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, is_git_directory
from ultralytics.yolo.utils.plotting import Annotator
@ -64,8 +63,7 @@ class ClassificationPredictor(BasePredictor):
return log_string
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
def predict(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if is_git_directory() \
else "https://ultralytics.com/images/bus.jpg"

View File

@ -1,6 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import hydra
import torch
import torchvision
@ -8,13 +7,13 @@ from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils import DEFAULT_CFG
from ultralytics.yolo.utils.torch_utils import strip_optimizer
class ClassificationTrainer(BaseTrainer):
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
def __init__(self, config=DEFAULT_CFG, overrides=None):
if overrides is None:
overrides = {}
overrides["task"] = "classify"
@ -136,8 +135,7 @@ class ClassificationTrainer(BaseTrainer):
# self.run_callbacks('on_fit_epoch_end')
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def train(cfg):
def train(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
@ -152,7 +150,7 @@ def train(cfg):
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**cfg)
model.train(**vars(cfg))
if __name__ == "__main__":

View File

@ -1,10 +1,8 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import hydra
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils import DEFAULT_CFG
from ultralytics.yolo.utils.metrics import ClassifyMetrics
@ -46,8 +44,7 @@ class ClassificationValidator(BaseValidator):
self.logger.info(pf % ("all", self.metrics.top1, self.metrics.top5))
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def val(cfg):
def val(cfg=DEFAULT_CFG):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "imagenette160"
validator = ClassificationValidator(args=cfg)