Metrics and loss structure (#28)
Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
18
ultralytics/yolo/v8/classify/val.py
Normal file
18
ultralytics/yolo/v8/classify/val.py
Normal file
@ -0,0 +1,18 @@
|
||||
import torch
|
||||
|
||||
from ultralytics import yolo
|
||||
|
||||
|
||||
class ClassificationValidator(yolo.BaseValidator):
|
||||
|
||||
def init_metrics(self):
|
||||
self.correct = torch.tensor([])
|
||||
|
||||
def update_metrics(self, preds, targets):
|
||||
correct_in_batch = (targets[:, None] == preds).float()
|
||||
self.correct = torch.cat((self.correct, correct_in_batch))
|
||||
|
||||
def get_stats(self):
|
||||
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy
|
||||
top1, top5 = acc.mean(0).tolist()
|
||||
return {"top1": top1, "top5": top5, "fitness": top5}
|
||||
Reference in New Issue
Block a user