Metrics and loss structure (#28)
Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
@ -4,10 +4,8 @@ from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import torch
|
||||
import torch.hub as hub
|
||||
import torchvision
|
||||
import torchvision.transforms as T
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from val import ClassificationValidator
|
||||
|
||||
from ultralytics.yolo import BaseTrainer, utils, v8
|
||||
from ultralytics.yolo.data import build_classification_dataloader
|
||||
@ -15,7 +13,7 @@ from ultralytics.yolo.engine.trainer import CONFIG_PATH_ABS, DEFAULT_CONFIG
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class Trainer(BaseTrainer):
|
||||
class ClassificationTrainer(BaseTrainer):
|
||||
|
||||
def get_dataset(self):
|
||||
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
|
||||
@ -55,13 +53,18 @@ class Trainer(BaseTrainer):
|
||||
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
return ClassificationValidator(self.test_loader, self.device, logger=self.console) # validator
|
||||
|
||||
def criterion(self, preds, targets):
|
||||
return torch.nn.functional.cross_entropy(preds, targets)
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=CONFIG_PATH_ABS, config_name=str(DEFAULT_CONFIG).split(".")[0])
|
||||
def train(cfg):
|
||||
model = "squeezenet1_0"
|
||||
dataset = "imagenette160" # or yolo.ClassificationDataset("mnist")
|
||||
criterion = torch.nn.CrossEntropyLoss() # yolo.Loss object
|
||||
trainer = Trainer(model, dataset, criterion, config=cfg)
|
||||
cfg.model = cfg.model or "squeezenet1_0"
|
||||
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
|
||||
trainer = ClassificationTrainer(cfg)
|
||||
trainer.run()
|
||||
|
||||
|
||||
|
18
ultralytics/yolo/v8/classify/val.py
Normal file
18
ultralytics/yolo/v8/classify/val.py
Normal file
@ -0,0 +1,18 @@
|
||||
import torch
|
||||
|
||||
from ultralytics import yolo
|
||||
|
||||
|
||||
class ClassificationValidator(yolo.BaseValidator):
|
||||
|
||||
def init_metrics(self):
|
||||
self.correct = torch.tensor([])
|
||||
|
||||
def update_metrics(self, preds, targets):
|
||||
correct_in_batch = (targets[:, None] == preds).float()
|
||||
self.correct = torch.cat((self.correct, correct_in_batch))
|
||||
|
||||
def get_stats(self):
|
||||
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy
|
||||
top1, top5 = acc.mean(0).tolist()
|
||||
return {"top1": top1, "top5": top5, "fitness": top5}
|
Reference in New Issue
Block a user