Metrics and loss structure (#28)

Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia
2022-10-15 23:09:05 +05:30
committed by GitHub
parent d0b3c9812b
commit c5cb76b356
12 changed files with 183 additions and 43 deletions

View File

@ -4,10 +4,8 @@ from pathlib import Path
import hydra
import torch
import torch.hub as hub
import torchvision
import torchvision.transforms as T
from omegaconf import DictConfig, OmegaConf
from val import ClassificationValidator
from ultralytics.yolo import BaseTrainer, utils, v8
from ultralytics.yolo.data import build_classification_dataloader
@ -15,7 +13,7 @@ from ultralytics.yolo.engine.trainer import CONFIG_PATH_ABS, DEFAULT_CONFIG
# BaseTrainer python usage
class Trainer(BaseTrainer):
class ClassificationTrainer(BaseTrainer):
def get_dataset(self):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
@ -55,13 +53,18 @@ class Trainer(BaseTrainer):
return model
def get_validator(self):
return ClassificationValidator(self.test_loader, self.device, logger=self.console) # validator
def criterion(self, preds, targets):
return torch.nn.functional.cross_entropy(preds, targets)
@hydra.main(version_base=None, config_path=CONFIG_PATH_ABS, config_name=str(DEFAULT_CONFIG).split(".")[0])
def train(cfg):
model = "squeezenet1_0"
dataset = "imagenette160" # or yolo.ClassificationDataset("mnist")
criterion = torch.nn.CrossEntropyLoss() # yolo.Loss object
trainer = Trainer(model, dataset, criterion, config=cfg)
cfg.model = cfg.model or "squeezenet1_0"
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
trainer = ClassificationTrainer(cfg)
trainer.run()

View File

@ -0,0 +1,18 @@
import torch
from ultralytics import yolo
class ClassificationValidator(yolo.BaseValidator):
def init_metrics(self):
self.correct = torch.tensor([])
def update_metrics(self, preds, targets):
correct_in_batch = (targets[:, None] == preds).float()
self.correct = torch.cat((self.correct, correct_in_batch))
def get_stats(self):
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
return {"top1": top1, "top5": top5, "fitness": top5}