Metrics and loss structure (#28)

Co-authored-by: Ayush Chaurasia <ayush.chuararsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ayush Chaurasia
2022-10-15 23:09:05 +05:30
committed by GitHub
parent d0b3c9812b
commit c5cb76b356
12 changed files with 183 additions and 43 deletions

View File

@ -28,20 +28,11 @@ DEFAULT_CONFIG = "defaults.yaml"
class BaseTrainer:
def __init__(
self,
model: str,
data: str,
criterion, # Should we create our own base loss classes? yolo.losses -> v8.losses.clfLoss
validator=None,
config=CONFIG_PATH_ABS / DEFAULT_CONFIG):
def __init__(self, config=CONFIG_PATH_ABS / DEFAULT_CONFIG):
self.console = LOGGER
self.model = model
self.data = data
self.criterion = criterion # ComputeLoss object TODO: create yolo.Loss classes
self.validator = val # Dummy validator
self.model, self.data, self.train, self.hyps = self._get_config(config)
self.validator = None
self.callbacks = defaultdict(list)
self.train, self.hyps = self._get_config(config)
self.console.info(f"Training config: \n train: \n {self.train} \n hyps: \n {self.hyps}") # to debug
# Directories
self.save_dir = utils.increment_path(Path(self.train.project) / self.train.name, exist_ok=self.train.exist_ok)
@ -57,7 +48,7 @@ class BaseTrainer:
self.console.info(f"running on device {self.device}")
self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu')
# Model and Dataloaders. TBD: Should we move this inside trainer?
# Model and Dataloaders.
self.trainset, self.testset = self.get_dataset() # initialize dataset before as nc is needed for model
self.model = self.get_model()
self.model = self.model.to(self.device)
@ -80,9 +71,9 @@ class BaseTrainer:
try:
if isinstance(config, (str, Path)):
config = OmegaConf.load(config)
return config.train, config.hyps
return config.model, config.data, config.train, config.hyps
except KeyError as e:
raise Exception("Missing key(s) in config") from e
raise KeyError("Missing key(s) in config") from e
def add_callback(self, onevent: str, callback):
"""
@ -131,10 +122,9 @@ class BaseTrainer:
self.train_loader = self.get_dataloader(self.trainset, batch_size=self.train.batch_size, rank=rank)
if rank in {0, -1}:
print(" Creating testloader rank :", rank)
# self.test_loader = self.get_dataloader(self.testset,
# batch_size=self.train.batch_size*2,
# rank=rank)
# print("created testloader :", rank)
self.test_loader = self.get_dataloader(self.testset, batch_size=self.train.batch_size * 2, rank=rank)
self.validator = self.get_validator()
print("created testloader :", rank)
def _do_train(self, rank, world_size):
if world_size > 1:
@ -235,11 +225,8 @@ class BaseTrainer:
"""
pass
def set_criterion(self, criterion):
"""
:param criterion: yolo.Loss object.
"""
self.criterion = criterion
def get_validator(self):
pass
def optimizer_step(self):
self.scaler.unscale_(self.optimizer) # unscale gradients
@ -265,6 +252,12 @@ class BaseTrainer:
if not self.best_fitness or self.best_fitness < self.fitness:
self.best_fitness = self.fitness
def build_targets(self, preds, targets):
pass
def criterion(self, preds, targets):
pass
def progress_string(self):
"""
Returns progress string depending on task type.

View File

@ -0,0 +1,105 @@
import logging
import torch
from tqdm import tqdm
from ultralytics.yolo.utils import Profile, select_device
class BaseValidator:
"""
Base validator class.
"""
def __init__(self, dataloader, device='', half=False, pbar=None, logger=None):
self.dataloader = dataloader
self.half = half
self.device = select_device(device, dataloader.batch_size)
self.pbar = pbar
self.logger = logger or logging.getLogger()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
training = trainer is not None
# trainer = trainer or self.trainer_class.get_trainer()
assert training or model is not None, "Either trainer or model is needed for validation"
if training:
model = trainer.model
self.half &= self.device.type != 'cpu'
model = model.half() if self.half else model
else: # TODO: handle this when detectMultiBackend is supported
# model = DetectMultiBacked(model)
pass
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
loss = 0
n_batches = len(self.dataloader)
desc = self.set_desc()
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
self.init_metrics()
with torch.cuda.amp.autocast(enabled=self.device.type != 'cpu'):
for images, labels in bar:
# pre-process
with dt[0]:
images, labels = self.preprocess_batch(images, labels)
# inference
with dt[1]:
preds = model(images)
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if training:
loss += trainer.criterion(preds, labels) / images.shape[0]
# pre-process predictions
with dt[3]:
preds = self.preprocess_preds(preds)
self.update_metrics(preds, labels)
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
# print speeds
if not training:
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
# TODO: implement save json
return stats
def preprocess_batch(self, images, labels):
return images.to(self.device, non_blocking=True), labels.to(self.device)
def preprocess_preds(self, preds):
return preds
def init_metrics(self):
pass
def update_metrics(self, preds, targets):
pass
def get_stats(self):
pass
def check_stats(self, stats):
pass
def print_results(self):
pass
def set_desc(self):
pass