`ultralytics 8.0.37` add TFLite metadata in AutoBackend (#953)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Aarni Koskela <akx@iki.fi>
single_channel
Glenn Jocher 2 years ago committed by GitHub
parent 20fe708f31
commit bdc6cd4d8b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

3
.gitignore vendored

@ -81,6 +81,9 @@ target/
profile_default/
ipython_config.py
# Profiling
*.pclprof
# pyenv
.python-version

@ -216,9 +216,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classification/) fo
## <div align="center">Ultralytics HUB</div>
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv8
🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now! Also run YOLOv8 models on
your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)!
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 (coming soon) 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>

@ -34,10 +34,10 @@ seaborn>=0.11.0
# openvino-dev>=2022.3 # OpenVINO export
# Extras --------------------------------------
ipython # interactive notebook
psutil # system utilization
thop>=0.1.1 # FLOPs computation
wheel>=0.38.0 # Snyk vulnerability fix
# ipython # interactive notebook
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
# roboflow

@ -1,8 +1,8 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
__version__ = "8.0.36"
__version__ = "8.0.37"
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils.checks import check_yolo as checks
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import
__all__ = ["__version__", "YOLO", "checks"] # allow simpler import

@ -12,7 +12,7 @@ from random import random
import requests
from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, ENVIRONMENT, LOGGER, RANK, SETTINGS, TryExcept, __version__,
colorstr, emojis, get_git_origin_url, is_git_dir, is_github_actions_ci,
colorstr, emojis, get_git_origin_url, is_colab, is_git_dir, is_github_actions_ci,
is_pip_package, is_pytest_running)
from ultralytics.yolo.utils.checks import check_online
@ -36,6 +36,8 @@ def check_dataset_disk_space(url='https://ultralytics.com/assets/coco128.zip', s
def request_with_credentials(url: str) -> any:
""" Make an ajax request with cookies attached """
if not is_colab():
raise OSError('request_with_credentials() must run in a Colab environment')
from google.colab import output # noqa
from IPython import display # noqa
display.display(

@ -1,7 +1,9 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import ast
import contextlib
import json
import platform
import zipfile
from collections import OrderedDict, namedtuple
from pathlib import Path
from urllib.parse import urlparse
@ -207,6 +209,12 @@ class AutoBackend(nn.Module):
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
# load metadata
with contextlib.suppress(zipfile.BadZipFile):
with zipfile.ZipFile(w, "r") as model:
meta_file = model.namelist()[0]
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
stride, names = int(meta['stride']), meta['names']
elif tfjs: # TF.js
raise NotImplementedError('ERROR: YOLOv8 TF.js inference is not supported')
elif paddle: # PaddlePaddle
@ -214,7 +222,7 @@ class AutoBackend(nn.Module):
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
import paddle.inference as pdi
if not Path(w).is_file(): # if not *.pdmodel
w = next(Path(w).rglob('*.pdmodel')) # get *.xml file from *_openvino_model dir
w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
weights = Path(w).with_suffix('.pdiparams')
config = pdi.Config(str(w), str(weights))
if cuda:
@ -328,6 +336,9 @@ class AutoBackend(nn.Module):
scale, zero_point = output['quantization']
x = (x.astype(np.float32) - zero_point) * scale # re-scale
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(self.output_details) == 2: # segment
y = [y[1], np.transpose(y[0], (0, 3, 1, 2))]
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels

@ -1,5 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
import ast
import contextlib
from copy import deepcopy
from pathlib import Path
@ -427,6 +428,8 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
# TODO: re-implement with eval() removal if possible
# args[j] = (locals()[a] if a in locals() else ast.literal_eval(a)) if isinstance(a, str) else a
with contextlib.suppress(NameError):
args[j] = eval(a) if isinstance(a, str) else a # eval strings
@ -480,28 +483,9 @@ def guess_model_task(model):
Raises:
SyntaxError: If the task of the model could not be determined.
"""
cfg = None
if isinstance(model, dict):
cfg = model
elif isinstance(model, nn.Module): # PyTorch model
for x in 'model.args', 'model.model.args', 'model.model.model.args':
with contextlib.suppress(Exception):
return eval(x)['task']
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
with contextlib.suppress(Exception):
cfg = eval(x)
break
elif isinstance(model, (str, Path)):
model = str(model)
if '-seg' in model:
return "segment"
elif '-cls' in model:
return "classify"
else:
return "detect"
def cfg2task(cfg):
# Guess from YAML dictionary
if cfg:
m = cfg["head"][-1][-2].lower() # output module name
if m in ["classify", "classifier", "cls", "fc"]:
return "classify"
@ -510,8 +494,20 @@ def guess_model_task(model):
if m in ["segment"]:
return "segment"
# Guess from model cfg
if isinstance(model, dict):
with contextlib.suppress(Exception):
return cfg2task(model)
# Guess from PyTorch model
if isinstance(model, nn.Module):
if isinstance(model, nn.Module): # PyTorch model
for x in 'model.args', 'model.model.args', 'model.model.model.args':
with contextlib.suppress(Exception):
return eval(x)['task']
for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
with contextlib.suppress(Exception):
return cfg2task(eval(x))
for m in model.modules():
if isinstance(m, Detect):
return "detect"
@ -520,6 +516,16 @@ def guess_model_task(model):
elif isinstance(m, Classify):
return "classify"
# Guess from model filename
if isinstance(model, (str, Path)):
model = Path(model).stem
if '-seg' in model:
return "segment"
elif '-cls' in model:
return "classify"
else:
return "detect"
# Unable to determine task from model
raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, "
"i.e. 'task=detect', 'task=segment' or 'task=classify'.")

@ -1,3 +1,5 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
from . import v8
__all__ = ["v8"]

@ -142,7 +142,7 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
string = ''
for x in mismatched:
matches = get_close_matches(x, base) # key list
matches = [f"{k}={DEFAULT_CFG_DICT[k]}" if DEFAULT_CFG_DICT[k] is not None else k for k in matches] # k=v
matches = [f"{k}={DEFAULT_CFG_DICT[k]}" if DEFAULT_CFG_DICT.get(k) is not None else k for k in matches]
match_str = f"Similar arguments are i.e. {matches}." if matches else ''
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e

@ -4,3 +4,13 @@ from .base import BaseDataset
from .build import build_classification_dataloader, build_dataloader, load_inference_source
from .dataset import ClassificationDataset, SemanticDataset, YOLODataset
from .dataset_wrappers import MixAndRectDataset
__all__ = [
"BaseDataset",
"ClassificationDataset",
"MixAndRectDataset",
"SemanticDataset",
"YOLODataset",
"build_classification_dataloader",
"build_dataloader",
"load_inference_source",]

@ -73,7 +73,7 @@ from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, __version__, callbacks,
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode, get_latest_opset
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment
@ -508,7 +508,7 @@ class Exporter:
onnx = self.file.with_suffix('.onnx')
# Export to TF SavedModel
subprocess.run(f'onnx2tf -i {onnx} --output_signaturedefs -o {f}', shell=True)
subprocess.run(f'onnx2tf -i {onnx} -o {f} --non_verbose', shell=True)
# Add TFLite metadata
for tflite_file in Path(f).rglob('*.tflite'):

@ -108,8 +108,8 @@ class YOLO:
Raises TypeError is model is not a PyTorch model
"""
if not isinstance(self.model, nn.Module):
raise TypeError(f"model='{self.model}' must be a PyTorch model, but is a different type. PyTorch models "
f"can be used to train, val, predict and export, i.e. "
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
f"PyTorch models can be used to train, val, predict and export, i.e. "
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")

@ -221,10 +221,9 @@ def is_jupyter():
Returns:
bool: True if running inside a Jupyter Notebook, False otherwise.
"""
try:
with contextlib.suppress(Exception):
from IPython import get_ipython
return get_ipython() is not None
except ImportError:
return False
@ -287,10 +286,8 @@ def is_pytest_running():
Returns:
(bool): True if pytest is running, False otherwise.
"""
try:
import sys
with contextlib.suppress(Exception):
return "pytest" in sys.modules
except ImportError:
return False

@ -1 +1,5 @@
from .base import add_integration_callbacks, default_callbacks
__all__ = [
'add_integration_callbacks',
'default_callbacks',]

@ -17,7 +17,6 @@ import numpy as np
import pkg_resources as pkg
import psutil
import torch
from IPython import display
from matplotlib import font_manager
from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, downloads, emojis,
@ -292,8 +291,10 @@ def check_yolo(verbose=True):
gib = 1 << 30 # bytes per GiB
ram = psutil.virtual_memory().total
total, used, free = shutil.disk_usage("/")
display.clear_output()
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
with contextlib.suppress(Exception): # clear display if ipython is installed
from IPython import display
display.clear_output()
else:
s = ''

@ -3,3 +3,5 @@
from ultralytics.yolo.v8.classify.predict import ClassificationPredictor, predict
from ultralytics.yolo.v8.classify.train import ClassificationTrainer, train
from ultralytics.yolo.v8.classify.val import ClassificationValidator, val
__all__ = ["ClassificationPredictor", "predict", "ClassificationTrainer", "train", "ClassificationValidator", "val"]

@ -3,3 +3,5 @@
from .predict import DetectionPredictor, predict
from .train import DetectionTrainer, train
from .val import DetectionValidator, val
__all__ = ["DetectionPredictor", "predict", "DetectionTrainer", "train", "DetectionValidator", "val"]

@ -3,3 +3,5 @@
from .predict import SegmentationPredictor, predict
from .train import SegmentationTrainer, train
from .val import SegmentationValidator, val
__all__ = ["SegmentationPredictor", "predict", "SegmentationTrainer", "train", "SegmentationValidator", "val"]

Loading…
Cancel
Save