ultralytics 8.0.123
Ubuntu security and VideoWriter codec fixes (#3380)
This commit is contained in:
@ -16,9 +16,9 @@ The Ultralytics YOLO format is a dataset configuration format that allows you to
|
||||
|
||||
```yaml
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes (80 COCO classes)
|
||||
|
@ -38,55 +38,33 @@ Format with Dim = 3
|
||||
|
||||
In this format, `<class-index>` is the index of the class for the object,`<x> <y> <width> <height>` are coordinates of boudning box, and `<px1> <py1> <px2> <py2> ... <pxn> <pyn>` are the pixel coordinates of the keypoints. The coordinates are separated by spaces.
|
||||
|
||||
** Dataset file format **
|
||||
### Dataset YAML format
|
||||
|
||||
The Ultralytics framework uses a YAML file format to define the dataset and model configuration for training Detection Models. Here is an example of the YAML format used for defining a detection dataset:
|
||||
|
||||
```yaml
|
||||
train: <path-to-training-images>
|
||||
val: <path-to-validation-images>
|
||||
|
||||
nc: <number-of-classes>
|
||||
names: [<class-1>, <class-2>, ..., <class-n>]
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [num_kpts, dim] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [n1, n2 ... , n(num_kpts)]
|
||||
```
|
||||
|
||||
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
|
||||
|
||||
The `nc` field specifies the number of object classes in the dataset.
|
||||
|
||||
The `names` field is a list of the names of the object classes. The order of the names should match the order of the object class indices in the YOLO dataset files.
|
||||
|
||||
NOTE: Either `nc` or `names` must be defined. Defining both are not mandatory
|
||||
|
||||
Alternatively, you can directly define class names like this:
|
||||
|
||||
```yaml
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
```
|
||||
|
||||
(Optional) if the points are symmetric then need flip_idx, like left-right side of human or face.
|
||||
For example let's say there're five keypoints of facial landmark: [left eye, right eye, nose, left point of mouth, right point of mouse], and the original index is [0, 1, 2, 3, 4], then flip_idx is [1, 0, 2, 4, 3].(just exchange the left-right index, i.e 0-1 and 3-4, and do not modify others like nose in this example)
|
||||
|
||||
** Example **
|
||||
|
||||
```yaml
|
||||
train: data/train/
|
||||
val: data/val/
|
||||
|
||||
nc: 2
|
||||
names: ['person', 'car']
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes dictionary
|
||||
names:
|
||||
0: person
|
||||
```
|
||||
|
||||
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
|
||||
|
||||
`names` is a dictionary of class names. The order of the names should match the order of the object class indices in the YOLO dataset files.
|
||||
|
||||
(Optional) if the points are symmetric then need flip_idx, like left-right side of human or face.
|
||||
For example if we assume five keypoints of facial landmark: [left eye, right eye, nose, left mouth, right mouth], and the original index is [0, 1, 2, 3, 4], then flip_idx is [1, 0, 2, 4, 3] (just exchange the left-right index, i.e 0-1 and 3-4, and do not modify others like nose in this example).
|
||||
|
||||
## Usage
|
||||
|
||||
!!! example ""
|
||||
|
@ -37,44 +37,31 @@ Here is an example of the YOLO dataset format for a single image with two object
|
||||
|
||||
Note: The length of each row does not have to be equal.
|
||||
|
||||
** Dataset file format **
|
||||
### Dataset YAML format
|
||||
|
||||
The Ultralytics framework uses a YAML file format to define the dataset and model configuration for training Detection Models. Here is an example of the YAML format used for defining a detection dataset:
|
||||
|
||||
```yaml
|
||||
train: <path-to-training-images>
|
||||
val: <path-to-validation-images>
|
||||
|
||||
nc: <number-of-classes>
|
||||
names: [<class-1>, <class-2>, ..., <class-n>]
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes (80 COCO classes)
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
2: car
|
||||
...
|
||||
77: teddy bear
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
```
|
||||
|
||||
The `train` and `val` fields specify the paths to the directories containing the training and validation images, respectively.
|
||||
|
||||
The `nc` field specifies the number of object classes in the dataset.
|
||||
|
||||
The `names` field is a list of the names of the object classes. The order of the names should match the order of the object class indices in the YOLO dataset files.
|
||||
|
||||
NOTE: Either `nc` or `names` must be defined. Defining both are not mandatory.
|
||||
|
||||
Alternatively, you can directly define class names like this:
|
||||
|
||||
```yaml
|
||||
names:
|
||||
0: person
|
||||
1: bicycle
|
||||
```
|
||||
|
||||
** Example **
|
||||
|
||||
```yaml
|
||||
train: data/train/
|
||||
val: data/val/
|
||||
|
||||
nc: 2
|
||||
names: ['person', 'car']
|
||||
```
|
||||
`names` is a dictionary of class names. The order of the names should match the order of the object class indices in the YOLO dataset files.
|
||||
|
||||
## Usage
|
||||
|
||||
|
Reference in New Issue
Block a user