|
|
|
@ -76,7 +76,6 @@ class Results(SimpleClass):
|
|
|
|
|
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
|
|
|
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
|
|
|
orig_shape (tuple): The original image shape in (height, width) format.
|
|
|
|
@ -172,6 +171,7 @@ class Results(SimpleClass):
|
|
|
|
|
pil=False,
|
|
|
|
|
img=None,
|
|
|
|
|
im_gpu=None,
|
|
|
|
|
kpt_radius=5,
|
|
|
|
|
kpt_line=True,
|
|
|
|
|
labels=True,
|
|
|
|
|
boxes=True,
|
|
|
|
@ -190,6 +190,7 @@ class Results(SimpleClass):
|
|
|
|
|
pil (bool): Whether to return the image as a PIL Image.
|
|
|
|
|
img (numpy.ndarray): Plot to another image. if not, plot to original image.
|
|
|
|
|
im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
|
|
|
|
|
kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
|
|
|
|
|
kpt_line (bool): Whether to draw lines connecting keypoints.
|
|
|
|
|
labels (bool): Whether to plot the label of bounding boxes.
|
|
|
|
|
boxes (bool): Whether to plot the bounding boxes.
|
|
|
|
@ -251,7 +252,7 @@ class Results(SimpleClass):
|
|
|
|
|
# Plot Pose results
|
|
|
|
|
if self.keypoints is not None:
|
|
|
|
|
for k in reversed(self.keypoints.data):
|
|
|
|
|
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line)
|
|
|
|
|
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
|
|
|
|
|
|
|
|
|
|
return annotator.result()
|
|
|
|
|
|
|
|
|
|